SuperStabilizing Protocols for Dynamic Distributed Systems

(Preliminary Version)

Shlomi Dolev* Ted Herman'
Texas A&M University University of lowa
shlomi@cs.tamu.edu herman@cs.uiowa.edu

January 1995

Abstract

Two aspects of reliability of distributed protocols are a protocol’s ability to recover
from transient faults and a protocol’s ability to function in a dynamic environment.
Approaches for both of these aspects have been separately developed, but have draw-
backs when applied to an environment that has both transient faults and dynamic
changes. This paper introduces definitions and methods for addressing both concerns
in the design of systems.

A protocol is superstabilizing if it is (¢) self-stabilizing, meaning that it is guaranteed
to respond to an arbitrary transient fault by eventually satisfying and maintaining a
legitimacy predicate, and (i¢) it is guaranteed to satisfy a passage predicate at all times
when the system undergoes topology changes starting from a legitimate state. The
passage predicate is typically a safety property that should hold while the protocol
makes progress towards re-establishing legitimacy following a topology change.

Specific contributions of the paper include: superstabilizing protocols for coloring
and spanning tree construction; metrics for evaluating superstabilization; a general
method for converting self-stabilizing protocols into superstabilizing ones; and a gener-
alized form of a self-stabilizing topology update protocol which may have useful appli-
cations for other research.

*Part of this research was supported by TAMU Engineering Excellence funds and by NSF Presidential
Young Investigator Award CCR-9396098.

TThis research was supported in part by the Netherlands Organization for Scientific Research (NWO) un-
der contract NF 62-376 (NFI project ALADDIN: Algorithmic Aspects of Parallel and Distributed Systems).

www.manaraa.com

1 Introduction

The most general technique to enable a system to tolerate arbitrary transient faults is
self-stabilization: a protocol is self-stabilizing if, in response to any transient fault, it con-
verges to a legitimate state in finite time. The characterization of legitimate states, given
by a legitimacy predicate, specifies the protocol’s function. Such protocols are generally
evaluated by studying the efficiency of convergence, which entails bounding the time of
convergence to a legitimate state following a transient fault. Other aspects of convergence,
for instance safety properties, are of less interest since arbitrary transient faults can falsify
any non-trivial safety property.

The model of a dynamic system, is one where communication links and processors may
fail and recover during normal operation. Protocols for dynamic systems are designed to
cope with such failures and recovery without global reinitialization. These protocols con-
sider only global states that are reachable from a predefined initial state under a restrictive
sequence of failures; under such an assumption, the protocols attempt to cope with failures
with as few adjustments as possible. Thus, whereas self-stabilization research largely ig-
nores the behaviour of protocols between the time of a transient fault and restoration to a
legitimate state, dynamic protocols make guarantees about behaviour at all times (e.g. the
period between a failure event and the completion of necessary adjustments).

1.1 Superstabilization

Superstabilizing protocols combine benefits of both self-stabilizing and dynamic protocols.
We retain the idea of a legitimate state, but partitition illegitimate states into two classes,
depending on whether or not they satisfy a passage predicate. Roughly speaking, a protocol
is superstabilizing if it is (7) self-stabilizing, and (i) when started in a legitimate state and a
topology change occurs, the passage predicate holds and continues to hold until the protocol
reaches a legitimate state.

The passage predicate is defined with respect to a class of topology changes. Since
a legitimacy predicate is dependent on system topology, a topology change will typically
falsify legitimacy. The passage predicate must therefore be weaker than legitimacy, but
strong enough to be useful; ideally, the passage predicate should be the strongest predicate
that holds when a legitimate state undergoes a topology change event. One example for a
passage predicate is the existence of at most one token in a mutual exclusion task; whereas
in a legitimate state exactly one token exists, a processor crash could lose the token but not
falsify the passage predicate. Similarly, for the leader election task, the passage predicate
could specify that at most one leader exists.

Superstabilizing protocols are evaluated in several ways. Of interest are the worst-case
convergence time, i.e., the time required to estabilish a legitimate state following either a
transient fault or a topology change, and the scope of the convergence in terms of how much

www.manaraa.com

of the network’s data must be changed as a result of convergence. We classify superstabili-
zing protocols by the following complexity measures:

Stabilization time is the maximum amount of time! it takes for the protocol to reach a
legitimate state.

Superstabilization time is the maximum amount of time it takes for a protocol starting from
a legitimate state, followed by a single topology change, to reach a legitimate state.

Adjustment measure is the maximum number of processors that must change their local
states, upon a topology change from a legitimate state, so that the protocol is in a legitimate
state.

1.2 Background and Motivation

Many distributed protocols have been designed to cope with continuous dynamic changes
(e.g. [AAGS87, AGH90, AM92, AGR92]). These protocols make certain assumptions about
the behavior of processors and links during failure and recovery; for instance, most of those
works do not consider the possibility of processor crashes? and they assume that every
corrupted message is identified and discarded. If failures are frequent, these restrictive
assumptions can be too optimistic. In particular, when the protocol is an on-going protocol
that does not stop running (e.g., distributed operating system, topology update, token-
passing), even a single violation of the assumptions on the behavior of processors and links
can cause the system to permanently be in an inconsistent state.

A number of researchers [DIM93, KP93, APV91] suggest a self-stabilizing approach to
deal with dynamic systems. In these approaches, a state following a topology change is
seen as an inconsistent state from which the system will converge to a state consistent
with the new topology. Although self-stabilization can deal with dynamic systems, the
primary goal of self-stabilizing protocols is to recover from transient faults, and this view
has influenced the design and analysis of self-stabilizing protocols. For instance, for a correct
self-stabilizing protocol, there are no restrictions on the behavior of the system during the
convergence period — only convergence to a legitimate state is guaranteed.

Self-stabilization’s treatment of a dynamic system differs from that of the dynamic
protocols cited above in the way that topology changes are modelled. The dynamic protocols
agssume that topology changes are events signaling changes on incident processors. Self-
stabilizing protocols take a necessarily more conservative approach that is entirely state-
based: a topology change results in a new state from which convergence to a legitimacy is
guaranteed, with no dependence on a signal.® If a topology change can occur without any

! Measured by asynchronous time units called rounds, which are defined in the sequel.

2For example they do not tolerate the loss of the alternating bit value used by the alternating bit protocol
[BSW69], nor the loss of the message that is been currently sent, see [DW93].

?Any such signal would be recorded in the state, but a (transient) faulty topology change could occur
with no evidence of a signal.

www.manaraa.com

Figure 1: State Space and Convergence.

guarantee of a signal, it makes no sense to guarantee behavior of the protocol during the
period following a topology change. Yet when the system is in a legitimate state and a fault
s a detected event, can the behavior during the convergence be constrained to satisfy some
desired safety property? For instance, is it possible in these situations for the protocol to
maintain a “nearly legitimate” state during convergence?

In addition to constraining a protocol’s behaviour following a topology change to satisfy
a safety property, we can also require that the adjustments processors make to converge
are minimal. Consider the diagram shown in Figure 1. In this diagram, circles represent
closed sets of legitimate states. Arrows represent convergence from an illegitimate state to
a legitimate state. The length of an arrow is proportional to the scope of adjustment (e.g.,
number of processors that change state) due to convergence. The diagram illustrates the
case of a self-stabilizing protocol that, upon detecting an illegitimate state, resets the global
state to restore legitimacy. Notice, however, that one of the illegitimate states is near to a
legitimate one, as highlighted by the dashed box. Instead of using a standard global reset,
it would be better to adjust processor states so that convergence to a nearby legitimate
state occurs.

The issue can also be motivated by considering the problem of maintaining a spanning
tree in a network. Suppose the spanning tree is used for virtual circuits between processors
in the network. When a tree link fails, the spanning tree becomes disconnected; yet virtual
circuits entirely within a connected component can continue to operate. We would like to
restore the system to have a spanning tree so that existing virtual circuits in the connected
components remain operating; thus a least-impact legitimate state would be realized by
simply choosing a link to connect the components.

The time complexity of a self-stabilizing protocol is the worst-case measure of the time
spent reaching a legitimate state from an arbitrary initial state. But is this measure ap-
propriate for the view of self-stabilization for dynamic systems? Perhaps a better measure
would be the worst-case of starting from an arbitrary legitimate state, considering a single
topology change, and then measuring the time needed to again reach a legitimate state.
This approach can be motivated by considering the probability of certain types of faults:
while a transient fault is rare (but harmful), a dynamic change in the topology may be a
frequent event. Note that the concern of time complexity is orthogonal to the concern of
whether a protocol converges with minimal adjustments to its processor states following a

www.manaraa.com

topology change.

1.3 Results and Comparison with Previous Work

One thesis of this paper is that self-stabilizing protocols can be designed with dynamic
change in mind to improve response. Self-stabilizing protocols proposed for dynamic systems
[DIM93, KP93, APV91] do not use the fact that processor can detect that it is recovering
following a crash (note that in [APV91] only link failures are considered); consequently
there is no possibility of executing an “initialization” procedure during this recovery.

Recent work has shown how the basic model for self-stabilizing protocols, that consider
transient-faults, can be extended to handle permanent-faults [AG92, GP93, DW93]. Such
faulty behaviors as link crashes can be represented in the model by certain input variables;
for instance, the neighborhood of a processor by an input variable containing a set of
neighboring processor identifiers. A key observation for this paper is that a topology change
is usually a detectable event; and in cases where a topology change is not detected, we use
self-stabilization as a fall-back mechanism to deal with the change. In order to capture the
possibility of reacting to a change we extend the definitions of [AG92, GP93] to include
interrupts associated with such changes.

We use the fact that most dynamic changes are not entirely arbitrary, but are con-
strained, with fewer possibilities for change than in the general case of a transient fault. In
particular we show superstabilizing protocols are able to respond to dynamic changes with
few adjustments, in some cases only at a single processor. This situation corresponds to the
intuitive notion that a distributed system should distributively adjust to topology change:
if possible a change in one place of the system should not effect the output of the entire
system.

Superstabilizing protocols can be directly constructed: we present examples in Sec-
tions 6 and 7. The general question of converting a self-stabilizing protocol to one that is
superstabilizing is addressed by a method described in Section 9, which begins with a self-
stabilizing protocol, then builds upon that protocol by adding new components that detect
a dynamic change and then bring the system to a legitimate state with few adjustments. In
case the dynamic change is too drastic (e.g. many simultaneous topology changes) it may
be that our new components cannot cope with the change, in which case the underlying
self-stabilizing protocol guarantees eventual convergence to some legitimate state.

The remainder of the paper illustrates, with protocols, how the handling of dynamic
changes can be incorporated into protocol design. Following the introduction, we present
in Sections 6 and 7 motivating examples. Section 2 formalizes the treatment of dynamic
change. Section 9 describes a general method for converting a given self-stabilizing protocol
into one that is optimized for dynamic change; this can be seen as a “dynamic optimizer”
for self-stabilization. Finally, Section 11 contains concluding remarks.

www.manaraa.com

2 Dynamic System

This section introduces notation and definitions of computation, dynamic change, stabiliza-
tion and complexity measures. The general setting is a system in a dynamic environment.
The state of the system has two components: one component consists of all the variables,
program counters and communication data that can be altered by execution of system ac-
tions; the other component consists of input variables that represent the configuration of
the system: these input variables cannot be changed by the system, but may be changed
by the dynamic environment at any instant.

A system is represented by a graph where processors are nodes and links are (undi-
rected) edges. An edge between two processors exists iff the two processors are neighbours;
processors may only communicate if they are neighbours. FEach processor has a unique
identifier taken from a totally ordered domain. We use p, ¢, and r to denote processor
identifiers. Processors communicate using registers, however application of the model to a
message-passing system is intended; Section 13 sketches an implementation of the register
model in terms of message-based constructions.

Associated with each processor are code, internal variables, program counters, and a
shared register. A processor can write to its own shared register, but may only read shared
registers belonging to neighbouring processors. The code of a processor is a sequential
program; a program counter is associated with each processor. To simplify presentation, we
make the convention that advancing the program counter beyond the last statement of a
program returns the program counter to the program’s first statement; thus each program
takes the form of an infinite loop. An atomic step of a processor (in the sequel referred
to as steps) consists of the execution of one statement in a program. In one atomic step,
a processor performs some internal computation and at most one register operation. A
processor has two possible register operations, read and write. For many of the protocols
presented in this paper, each processor is equipped with an interrupt statement, which is
a statement concerned with adjusting to topology change. For each processor p there is
an input variable NN, which is a list of processors ¢ that are neighbours of p. Invariantly,
neighbourhoods satisfy p ¢ N, and ¢ € N, & p € N,.

Local variables of processors are of two types: variables used for computations and field
tmage variables. The former are denoted using unsubscripted variable names such as z, y,
and A. The field image variables refer to fields of registers; these variables are subscripted
to refer to the register location, for instance e, refers to a field of processor p’s register and
yq refers to a field of processor ¢’s register. Program statements that assign to field images
or use field images in calculations are not register operations: the field image is essentially
a cache of an actual register field. A processor p’s read(q) operation, defined for ¢ € N,,
atomically reads the register of processor ¢ and assigns all corresponding field images (e.g.
€4, Yq, €tc.) at processor p. A write operation atomically sets all fields of p’s register to
current image values. For convenience, we also permit a local calculation to specify field
image(s) with a write operation, for instance write(e, := 1) sets field image e, and writes to

www.manaraa.com

p’s register.

The state of a processor p fully describes its internal state, its neighbourhood N,, and
the value contained in its register; in the sequel we occasionally refer to the state of a
processor as a local state. The state of the system is a vector of states of all processors; a
system state is called a global state. For a global state o and a processor ¢, let o[q] denote
the local state of ¢ in state 0. A computation is a sequence of global states @ = (6,6, ")
such that for ¢ = 1,2, -- the global state 6,11 is reached from 68; by a single step of some
processor. A fair computation is a computation that is either finite or infinite and contains
infinitely many steps of each (non-crashed) processor.

A system topology is a specific system configuration of links and processors. Each pro-
cessor can determine the current status of its neighbourhood from its local state (via N,),
so the system topology can be extracted from a global state of the system. Let T.a denote
the topology for a given global state a. Dynamic changes transform the system from one
topology 7.« to another topology 7.3 by changing neighbourhoods and possibly removing
or adding processors.

A topology change eventis the removal or addition of a single link or processor, together
with the execution of certain atomic steps specified in the sequel. Topology changes involv-
ing numerous links and processors can be modelled by a sequence of single change events.
The crash of processor p is denoted crash,; the recovery of processor p is denoted recov,;
crash,, and recov,, denote link failure and recovery events. In our model, a processor crash
and a link crash are indistinguishable to a neighbour of the event: if p and ¢ are neighbours
and crash, occurs, then we model this event by crash,, with respect to reasoning about
processor q. We say that a topology change event & is incident on p if € is recov,, crash,,,
or recov,,. We extend this definition to be symmetric: & is incident on p iff p is incident on
E. Note that recovery of a processor together with links to its adjacent processors is treated
as multiple events in our model: recov, is one event, and each recov,, for neighbouring ¢
is a separate event; we further suppose that recov, occurs prior to recov,, in any processor
(and neighbouring link) recovery sequence.

A topology change £ incident on p causes the following to atomically occur at p: the
input variable IV, is changed to reflect £, the interrupt statement of the protocol is atomi-
cally executed, and p’s program counter is set to the first statement of the program. Note
that if & is incident on numerous processors, then all incident neighbourhoods change to
reflect £ and all processors execute the first interrupt step atomically with event £. Thus
the transition by £ from 7.« to 7.3 changes more than neighbourhoods; states e and 3 also
differ in the local states of processors incident on £ due to execution of interrupt steps at
these processors.

A trajectory is a sequence of global states in which each segment is either a fair com-
putation or a sequence of topology change events. For purposes of reasoning about self-
stabilization, we follow the standard method of proving properties of computations, not
trajectories. Dynamic change is handled indirectly in this approach: following an event &,

www.manaraa.com

if there are no further changes for a sufficiently long period, the protocol self-stabilizes in
the computation following &£ in the trajectory.

3 Stabilization

Researchers in the area of self-stabilization have proposed two sorts of definitions for the ba-
sic concept of legitimacy. The approach of [Dij74] defines legitimacy in terms of a predicate
over the system state; the other approach [L1.90] defines legitimacy in terms of behaviour.
The paper [BGM93] shows that the behaviour approach, which defines legitimacy as a suf-
fix property of computations, does not always have an equivalent expression in terms of
predicates over system states. Although the behaviour approach may be more general,
most stabilizing algorithms rely on some predicate over states (or snapshots of states) to
initiate or control stabilization. We follow the approach of defining legitimacy in terms of
a predicate on states. The remainder of this section defines legitimacy in our model and
points out some advantages and disadvantages of our definition.

Each global state of a system can be classified as either legitimate or illegitimate: the
predicate £ holds iff the system is in a legitimate state. The notation ¢ F £ denotes that £
holds at state o. A protocol is self-stabilizing iff for any fair computation starting from an
initial state o, a = L, every state ¢ in that computation satisfies o - L; and for every fair
computation starting from any initial state a such that a - =L, a state o satisfying o F £
is reached after a finite number of atomic steps.

Our model of processors and registers differs from the simpler state-reading model orig-
inally employed [Dij74] to define self-stabilization. In the state-reading model, there is no
notion of a program counter; the protocol is a set of rules and in one atomic step a proces-
sor can read its own variables, the variables of its neighbours and write new values into its
variables. Consequently, it is convenient in the state-reading model to describe predicate £
as a relation over processor variables. In our model, such a predicate is more complicated
since processor states consist of registers, local variables, and program counters; it is not
so convenient to specify £ completely as a relation over state-variables. Yet in nearly all
cases, the essence of a legitimate state is captured by a predicate P over a limited subset
of state-variables. For instance, P may hold if certain register fields form a tree in the
network, or if at most one token exists in the system. The problem is that P may not itself
be stable. It may be that a system state satisfies 77, but some local variables and program
counters in that state are such that following one atomic step, registers are overwritten with
the result that P is false. What is needed for a definition of £ is a predicate that specifies
the “reasonable” configurations of program counters, local variables and registers. Instead
of explicitly defining £ to cover all the details of program counters and local variables, we
use the following technique. For any fair computation ® and global state o, ¢ € ®, let
successor(o) be the state following o in ®. Suppose P is the property of interest, e.g. P
can be a predicate that holds if certain register fields form a tree. Then L is defined to be

www.manaraa.com

the weakest solution in unknown predicate X’ of the equation
(Ve,0: 0€®: (cF-X¥=>0FP) AN (06X = successor(o) - X))

For protocols in this paper, we use this technique to define £ implicitly, in terms of some
desired property P, thereby not bothering to specify details over program counters and
local variables. In order to prove that a protocol is self-stabilizing, we typically reason that
a processor’s local variables have sensible values after a single cycle in which neighbouring
registers are read and the processor’s own register is written using the local variables —
since registers are written by only one processor, the local variables continue to accurately
reflect the register contents after the first cycle. The characterization of program counters
and local variables remains implicit in such a proof and spares the reader of details.

4 Superstabilization

One motivation for superstabilization is that a system should react gracefully to a topology
change — preserving a passage predicate in the presence of the topology change. The
definition of superstabilization takes the idea of a “typical” change into account by specifying
a class A of topology change events. A self-stabilizing procotol is superstabilizing with
respect to events of type A, if starting from a legitimate state followed by a A-event, the
passage predicate holds continuously until the protocol converges to a legitimate state.

Definition 4.1 A protocol P is superstabilizing with respect to A iff P is self-stabilizing
and for every trajectory ® beginning at a legitimate state and containing a single topology
change events of type A, the passage predicate holds for every o € ®. O

Definition 4.2 A protocol P is continuously superstabilizing with respect to A iff P is self-
stabilizing and for every trajectory ® beginning at a legitimate state and containing only
change events of type A, the passage predicate holds for every o € ®. O

Definition 4.2 is called continuous superstabilization because the environment is allowed
to change the topology continuously, whereas Definition 4.1 addresses the case of a single
topology change. The definition of continuous superstabilization is motivated by the ap-
proach of dynamic protocols, which are designed to handle asynchronous topology changes
as they occur during system execution. This approach is necessary for dynamic protocols,
since they have no secondary mechanism for recovery from errors. Definition 4.1 is moti-
vated by the approach of self-stabilizing protocols, which can recover from topology change
provided the environment is stable for a “long enough” period following the change. Al-
though Definition 4.1 considers trajectories with a single change, we emphasize that the
intention is to handle trajectories with multiple changes (each change is completely acco-
modated before the next change occurs). Our definition could be modified to state this
explicitly, however we have chosen this simpler form in order to streamline proofs.

www.manaraa.com

A particular passage predicate is of special interest — we use it in our general method
for converting self-stabilizing protocols to superstabilizing protocols. To motivate this pred-
icate, suppose the system is in a legitimate state and a A-topology change occurs. As a
result, the system can be in an illegitimate state in such a way that a processor not incident
on the topology change, i.e. at some distance from the change event, must eventually change
its local state in order for the system to again reach legitimacy. However at the instant
of a topology change, processors not incident on that topology change appear locally to
have legitimate states. To formalize the notion of local legitimacy we propose a number of
definitions.

Let D be a set of processors. With respect to any state ¢ such that D is some subset
of the processors of 7.0, define T.0[D] to be the subgraph of 7.0 induced by D. Let o[D]
denote a vector of local states corresponding to the processors in D.

Definition 4.3 The vector of local states o[D] is locally legitimate iff there exists a state
a such that 7.o[D] is a subgraph of 7.a, ¢[D] is a subvector of a, and o F L. a

Because adjustment to a topology change may require changing state information at some
distance from the topology change, some type of coordination is necessary to effect the ad-
justment. During execution of the adjustment coordination, further topology changes could
occur (or even transient errors). We are therefore interested in self-stabilizing coordination
procedures, that is, procedures that are guaranteed to terminate coordination activity from
any initial state. The following definition is a building-block for the synchronization of co-
ordination following a topology change. It introduces the notion of a filter predicate, which
is a locally evaluated predicate that intuitively represents activity of coordination following
a topology change. The definition requires that filter predicates stabilize to false in any
computation, meaning that all coordination activity eventually halts.

Definition 4.4 A predicate 7, is a filter predicate for protocol P iff 7, is a function mapping
alocal state of p to a boolean so that every fair computation has a suffix in which (Vp :: =Z,)
holds at every state in that suffix. |

The following definition specifies a particular form of passage predicate, one that insures
local legitimacy during convergence. In the definition, the trajectory is left anonymous,
since the definition could apply to either continuous or non-continuous superstabilization.

Definition 4.5 Passage predicate Q is filter-based iff there exists a filter predicate 7 such
that for every state o the following holds: o = Q iff for every set of processors D: if o F =7,
holds for all p € D, then o[D] is locally legitimate. O

In words, for a filter-based passage predicate, any subgraph of the network in which filter
predicates are false is locally legitimate. The usefulness of such a passage predicate depends

www.manaraa.com

on a method to control the state of the filters by means of interrupts. The following
remarks outline the use of our conventions for interrupts, filter predicates, and programs to
achieve superstabilization. A change event & initiates an interrupt for all incident processors;
atomically, the interrupt step of each incident processor sets some flag in a field variable
and writes to its register so as to set 7 to true at that processor. Thus Z, is not only
a function of the local state, but can be inspected by any neighbour. It remains only to
guarantee that when a processor ¢ reads a register indicating 7, = true for a neighbour p,
then ¢ immediately sets Z, to true. In this way, the condition on set D in the definition
of superstabilization can be met. In essence, as the “news” of a topology change spreads
in the network, processors are frozen before they can process this news and remain frozen
until their states are adjusted to be made legitimate.

An advantage of a filter-based passage predicate is that 7, can be used locally to de-
termine that a processor p is in a “vulnerable” state, that its local variables and registers
are unreliable for the current topology. So long as 7, holds, a processor running a protocol
P is potentially an unreliable provider of service. Our intent is that a client of P should
take 7, into account when using P and wait until Z, is false, before relying again on P.
Clients of P that take 7, into account enjoy a higher quality of service. The change from
one topology to another is effectively atomic for such clients: the client switches from one
legitimate state to another legitimate state without processing during an illegitimate state.

5 Complexity of Superstabilization

A primary contribution of superstabilization is the notion of a “low—impact” reaction by a
protocol to dynamic change. Intuitively, this means that changes necessary in response to
dynamic change should affect relatively few processors and links. To formalize this notion,
we introduce an adjustment measure. To define an adjustment, we return to the notion of
legitimacy and a property P that effectively characterizes the legitimacy predicate L. Let
var(P) be the minimal collection of variables and fields upon which P depends. Call O the
state-space ranging only over the var(P) data. The expression §[O] denotes a system state
projected onto the O state-space. Now we consider a function F : O — O. Function F
maps states 6[O] to states o[O] satisfying o - £, where ¢ and ¢ are any states such that
o can be obtained from ¢ by a A-topology change £. The idea is that F represents the
strategy of a superstabilizing protocol in reacting to an event &, choosing a new legitimate
state following dynamic change. We rank a function F by means of an adjustment measure
R. The adjustment measure R is the maximum number of processors having different O-
states between o[O] and F(o[Q]), taken over all states o derived from some state § F £
followed by some change event £ € A. A definition of F with a small adjustment measure
R implies that few adjustments are necessary in response to a topology change.

To describe the time complexity of a protocol, the notion of a cycle is introduced. A
cycle for a processor p is a minimal sequence of steps in a computation so that a complete
iteration of the protocol at processor p completes, from first to last statement of the program

10

www.manaraa.com

for p. All the programs of this paper are constructed so that a processor p’s cycle consists of
reading all of p’s neighbour registers, some local computation, and writing into p’s register.
The time-complexity of a computation is measured by rounds, defined inductively as follows.
Given a computation ®, the first round of @ is finished at the first state at which every
processor has completed at least one cycle; round ¢ + 1 terminates after each processor has
executed one cycle following the termination of round q.

The order of magnitude of rounds, in terms of number of processors or network diameter,
is the chief measure of time complexity. This permits us some freedom in the analysis of a
protocol’s cycles. For instance, we can generalize the definition of cycle to consist of some
constant number of iterations of a processor’s program. Typically, to analyse the round
complexity of some protocol P, we consider a cycle to be a minimal sequence of steps so
that the first through the last statement of program are executed in order. This means, for
instance, that if P has a program with 30 statements, and execution begins at statement
15 (certainly possible in an arbitrary initial state), the first cycle would consist of execution
of statements 15-30 followed by execution of statements 1-30, since this is the minimal
sequence that guarantees that the first through last statement are executed in order (as
opposed to 15-30 followed by 1-14).

The stabilization time of a protocol is the maximum number of rounds it takes for the
system to reach a legitimate state starting from an arbitrary state. The superstabilization
time is the maximum number of rounds it takes for a system starting from an arbitrary
legitimate state o, followed by an arbitrary A-change event &, to again reach a legimate
state.

6 Superstabilizing Colouring

This section exercises the definitions and notation developed in Section 2-5 for a simple allo-
cation problem. A set of resources is to be allocated to processors so that no two neighbours
share the same resource. The problem is challenging to the extent that the set of resources
is limited. Our goal in this section is, however, not to investigate the most challenging
instance of the general problem, but rather to illustrate aspects of superstabilization.

Let A be a parameter, intended as a bound the maximum number of neighbours for
resource allocation. Let C be a totally ordered set of colours satisfying |C| > 14+ A. Each
processor p has a register field colour,. The problem is to allocate colours to processors
so that neighbouring processors have differing colours. We assume henceforth that each
processor has at most A neighbours in any trajectory, which makes colour selection a simple
matter. The property of interest P for legitimacy is

obP = ok (Vp,q: g€ N,: colour, # coloury) A colour, € C N coloury € C

A legitimate state for the colouring protocol is any state such that (i) property P is satisfied,
and (i) for each computation that starts in such a state, no processor changes colour in the
computation.

11

www.manaraa.com

The passage predicate Q for superstabilization is similar to P, except that processors
with colour =— are not considered in conflicts:

oFQ = oF(Yp,q: g€ N,: colour, # colour, V colour, =— V colour, =—)

The domain of a colour variable is thus extended to CU{—} to define the passage predicate.

Figure 2 presents a protocol for the allocation problem. Fach processor has a local
variables A and B used to collect the colours of its neighbours. A value —, satisfying
—¢ C is introduced for the purposes of superstabilization. The function choose selects the
minimum colour from the set S (and is undefined if S is empty).

The protocol of Figure 2 has two parts: one part is a self-stabilizing protocol, modified
to deal with the — element; the other part lists the interrupt that deals with topology
change events. The self-stabilizing section perpetually scans for a colour conflict with the
set of neighbouring processors having a larger identifier.* The interrupt statement writes
to the register, conditionally changing the colour, field in case the topology change event
was a restart of the processor or a link.

Lemma 6.1 Following one cycle of the colouring protocol at a processor p: colour, € C

holds.

Proof: The lemma follows because the cycle of the self-stabilizing section includes steps
S1-S7 in order, implying |A| < A and |B| < A, from which we conclude that choose
invocations in S8 and S9 deliver some colour from set C. O

Lemma 6.2 The colouring protocol is self-stabilizing and converges in O(n) rounds.

Proof: Let ® be an arbitrary computation of the protocol beginning at state o and let n be
the number of processors in 7.0. Lemmas 6.1 imply that after one round, no colour variable
has or will obtain the value — in the computation. We now show, by induction on the number
of processors, that following round 2 4+ ¢, 0 < ¢ < n, the ¢ largest-identifier processors have
permanent colour assignments such that no conflict with a neighbour of higher identity
exists among these ¢ processors. The basis for the induction is trivial since the empty set
of processors satisfies the assertion. Now suppose the claim holds following round 2 + k,
0 <k < n. We examine the effect of round 3 4+ k with the respect to processor r, where r is
the kP largest processor identifier. In this round, processor 7 chooses some colour differing

1t is interesting to note that the more powerful state-reading model has a particularly simple protocol
for colouring when the so-called central demon is assumed:

(lg: g € Np: colourp, = colour, — coloury, := choose(C \ {colour,|r € N, }))

is the rule for a process p; after at most n state transitions, where n 1s the number of processes, the protocol
has stabilized. The notation (J¢: ¢ € Ny : X) is shorthand for specifying a copy of the rule X for each
neighbour of p. This protocol fails under the distributed demon, i.e. when rules may simultaneously fire.

12

www.manaraa.com

from any colour of a processor with a larger identity. The choice is deterministic, based on
the colours of the larger identities. By hypothesis, these larger identity colour assignments
are permanent, so following round 3 4+ k£ and for all subsequent rounds, processor r’s colour
is fixed and differs from the colours of all neighbours of larger identity. The induction is
completed. Thus after 2 + n rounds, all processors have permanent colour assignments. It
only remains to remark that no colour-conflict exists after 2 + n rounds, since any such
conflict would imply conflict between at least two processors, one having a larger identifier
than the other. |

Lemma 6.3 The O(n) bound of Lemma 6.2 is tight.

Proof: Consider a topology consisting of a chain of n processors, named 1,2, ..., n, with
processors 1 and n being endpoints of the chain. Let A = 2 and let C consist of three
colours, green < red < blue. In the initial state, all processors have colour red. For the
computation, we choose a scenario in which processors compute synchronously. In the first
round, processor n chooses green because it is the minimum colour and all other processors
also choose green because it is the minimum colour different from red. After the first round,
colour, = green is stable for the remainder of the computation. In the second round, all
processors other than n choose red since it is the smallest colour different from green. After
the second round, colour,_1 = red is stable for the remainder of the computation. The
argument can be repeated to show that n rounds are required to reach a legitimate state. O

We conjecture that any self-stabilizing colouring protocol for dynamic systems with
parameter A, where the number of processors may exceed A, has a worst-case convergence
of at least O(n) rounds (the network diameter is O(n) in the worst case).

Lemma 6.4 The colouring protocol is superstabilizing with a superstabilizing time of
O(1) and adjustment measure R = 1 for A being the class single topology change events.

Proof: Self-stabilization is proved in Lemma 6.2. Let ® be a trajectory beginning at some
state 6, 6 F L, with ¢ being the second state of ® obtained from é by a topology change
event & (together with execution of the first interrupt step of all processors incident on
E), let ¥ be the suffix of ® beginning with state ¢, and let ¥ be a fair computation. The
remainder of the proof consists of showing that the system reaches a new legitimate state
without violating the passage predicate.

Every processor p with colour, #— in o has an identical colour in 6. By the fact that o
is legitimate no two neighboring processors with colour #— have identical colours. Next we
show that only processors with colour =— in o change colours in ®. For the cases crash,,,
or crash, there is no processor with colour =— in o, so 58 is not executed. Moreover, the
B set of colours in 6 is a superset of B in any subsequent configuration in ®. Thus, in any
execution of $9 it holds that colour, ¢ B. Therefore, no processor change a color in ®.

13

www.manaraa.com

For the case of recover, no conflict of colours may arise since there is no link connect-
ing p to the rest of the system. The only left topology change is recover,, for which a
colour nonflict is eliminated by setting one colour to —. Then the single processor, p, with
colour, =— in o reads the neighbouring colours (in line S4) and assigns a colour that is not
one of the neighbouring colours in line $8. Thus, no other processor change colour in ®.

Both the O(1) superstabilization time and the adjustment measure R = 1 are implied
directly from the above case analyzis. |

The colouring protocol illustrates both qualitative and quantitative aspects of supersta-
bilization. The qualitative aspect is illustrated by the fact that the convergence following a
topology change does not violate a passage predicate. This ensures better service to the user
when no catastrophe takes place (i.e. in the absence of a transient fault or many topology
changes rapidly occuring). Quantitative aspects can be seen by the O(1) convergence time
and adjustment measure. The same protocol, when started in an arbitrary initial state in-
duced by a transient fault, might take O(n) rounds to converge and a processor could change
colours O(n) times during this convergence. Indeed if the superstabilizing components of
the protocol are removed, namely S8 and the interrupt statement, then O(n) rounds may
be required for convergence following even a single topology change event starting from a
legitimate state.

7 Superstabilizing Tree

Constructing a spanning tree in a network is a basic task for many protocols. Several
distributed reset procedures, including self-stabilizing ones, rely on the construction of a
rooted spanning tree to control synchronization. All existing deterministic self-stabilizing
algorithms to construct spanning trees rely on processor or link identifiers to select, for
example, a shortest-path tree or a breadth-first search tree. In a dynamic network, a change
event can invalidate an existing spanning tree and require that a new tree be computed.
Although computation is required when a change event crash,, removes one of the links in
the current spanning tree, one would hope that a change event recover,, would require no
adjustment to an existing spanning tree. Yet all the self-stabilizing spanning tree algorithms
we know of require, in some cases (e.g. [DIM93], [AG90], [AK93]), recomputation of a tree
when a link recovers, regardless of whether the network currently has a spanning tree or not.
The reason is that a processor cannot locally “know” that the system has stabilized and must
make a deterministic choice of edges to be included in the tree. We propose a superstabilizing
approach to tree construction. The protocol given in this section successfully “ignores” all
dynamic changes that add links to an existing spanning tree or crash links that are not
contained in the tree.

All trajectories considered in this section are free of crash,, or recover, events; the number
of processors remains fixed at n and we give every processor access to the constant n. We
also suppose that the network remains, at all states in a trajectory, connected.

14

www.manaraa.com

self-stabilizing section :

S1

S2
S3
S4
S5
S6
S7

S8

S9

S10

forall ¢ € N,
do

read(q)

A = AU colour,

if ¢>p then B := BU colour,

od
if colour, ¢ C then colour, := choose(C\ A)
if colour, € B then colour, := choose(C\ A)

write

interrupt section :

El

write (if £ =recov, then colour, := choose(C)
if & =recov,;, A p>gq then colour, :=—)

Figure 2: Superstabilizing Colouring Protocol for Processor p.

15

www.manharaa.com

The basic idea of the protocol is the construction of a least-cost path tree to a processor
r designated as the root of the tree. The key innovation of the protocol lies in the definition
of link costs. Fach link is assigned a cost in such a way that links that are part of the
tree have low cost whereas links outside the tree have high cost. Each processor p has two
register fields ¢, and d,. The field ¢, ranges over identifiers of processors. The register d,
contains a non-negative integer. The function w maps a pair of processor identifiers to an

integer:
1 ift,=¢q
g = { n ift,#q
Figure 3 shows the code of the superstabilizing spanning tree protocol. The property P of
interest for the tree protocol is that

(Vpq: p#Fr ANty =q: q€Np)

and that the collection of ¢, variables {t,| p # r} represents a spanning, directed tree
rooted at r. A legitimate state for the tree protocol is any state such that (i) property P is
satisfied, and (ii) for each computation that starts in such a state, no processor changes a
t, variable in the computation.

Lemma 7.1 The spanning tree protocol self-stabilizes in O(n) rounds.

Proof: Proof by induction on an arbitrary computation ®. The induction is based on a
directed tree. Let 7, be the maximum subset of processors satisfying: (1) d, = 0, (2) the
set {t,|p €T, N p# r} represents a directed tree rooted at r, (3) for p € T} and p # r,
register field d,, satisfies d, = 14 d, where ¢ = ¢, and, (4) each processor in 7’ has executed
at least one cycle in ®. After one round, d, = 0 holds for the remainder of the computation
as does t, #— for all p. Therefore, after the first round, 7, is non-empty, containing at least
r. The remainder of the proof concerns rounds two and higher, and is organized into three
claims.

Claim 1: (7, is stable). If p € T} holds at the beginning of the round, then
t, and d, do not change during the round. The claim follows by induction on
depth of the tree T,.

Claim 2: (7, growth). If there exists a processor that is not contained in
T, and (Vp: p ¢ T, : d, > 2n) holds at the beginning of the round, then
T, grows by at least one processor by the end of the round. The claim follows
by examining processors outside of T, and also neighbouring 7T,. Let p be such
a processor, outside 7). and neighbour to ¢ € T;,. By Claim 1, d, + w,, < 2n.
Therefore, during the round, p cannot choose t, to be some processor s satisfying
ds > 2n. Thus T, grows by at least one processor.

16

www.manaraa.com

Claim 3: (d, growth). Define M; to be the minimum d-register value of any
processor outside of T, in round 7; then M,y > M;. The claim is verified by
considering, for round ¢ and p € T, assignment to each d, register in that round.
During a round, the value obtained for d, is strictly larger than that of some
neighbouring dg; if ¢ € T,, then p € T, holds at the end of the round; and if
q & T,, then the claim holds.

A corollary of Claim 3 is that following rounds 2n + 2 and higher, for every p & T, the field
d, satisfies d, > 2n. Consequently for rounds 2n + 2 and higher, by Claim 2, if T, does
not contain all processors, then T, grows by at least one processor in each successive round.
The lemma follows because there are at most n processors. |

We define the class of change events A for purposes of superstabilization to be any recov,,
event or any crash,, event such that neither ¢, = ¢ nor ¢, = p holds at the moment of the
crash,, event. The passage predicate Q for the superstabilization property is identical to

P.

Lemma 7.2 The spanning tree protocol is superstabilizing for the class A with supersta-
bilization time O(1) and adjustment measure R = 1.

Proof: We show that starting from a state 6, 6 F L, followed by a topology change &,
& € A, resulting in a state o, that o = £ holds. In the case of £ = crash,, removing a
non-tree link, for either processor p or ¢ the weight of the p—¢ link w,, = n at state 0; by
assumption of 6 - L, it follows that computation of d and ¢ fields produce identical results
in any round following ¢ since these are necessarily based on unit w-values. In the case of
& = recov,, the weight of the new p—¢ link is w,, = n at state o, hence distances are not
reduced by addition of the new link and computation of d and ¢ fields produce identical
results in any round following o. Therefore o - L. ml

The tree protocol of this section illustrates quantitative and qualitative aspects of super-
stabilization. Since convergence occurs atomically with a change event from the class A,
qualitative aspects of superstabilization are instantly satisfied — the system is always in a
legitimate state! The quantitative aspects are due to the O(1) superstabilization time and
adjustment measure for changes in the class A.

The simple tree protocol of Figure 3 is not superstabilizing for events such as a tree
link crash. Examination of this case reveals that the fragment of the tree that remains
connected to the root following a link removal remains stable, which fulfills the goal of local
adjustment in response to dynamic change. However to obtain a superstabilizing protocol,
some machinery would be needed to control convergence following a tree link crash. Instead
of developing such machinery for the specific task of tree construction, we tackle the general
problem of superstabilization in subsequent sections.

17

www.manaraa.com

self-stabilizing section :
S1 =z, 9y = oo, —

S2 forall g€ N,

S3 do

S4 read(q)

S5 if > (dy+wy,) then 2,y = (d;+wy), ¢
S6 od

ST dp, t, == 2,9

S8 if p=7r then d,,t, = 0, r

S9 write

interrupt section :

E1l skip

Figure 3: Superstabilizing Tree Protocol for Processor p.

18

www.manharaa.com

8 Update Protocol

To simplify the presentation of our general methods for superstabilizing protocols, we em-
ploy a self-stabilizing update protocol. We view the update protocol as the simplest and
clearest self-stabilizing protocol for large class of tasks including: leader-election, topology
update and diameter estimation. To describe the task of the update protocol, suppose every
processor p has some field image x,; for the moment, we consider x, to be a constant. The
update problem is to broadcast each z, to all processors. This problem is called topology
update when the field z, contains all the local information about p’s links and network
characteristics. Many dynamic system are already equipped with a topology update pro-
tocol that notifies processors of the current topology; in such instances our general method
acts as an extension to this existing topology update. An optimal time (O(d) round) self-
stabilizing solution to the topology update is given in [SG89, D093]. To insure a desired
deterministic property of the protocol, we assume that the neighbourhood of a processor
N, is represented as an ordered list.

Let each processor p have, in addition to z,, a field e,, where e, contains three-tuples of
the form (g, u, k), in which ¢ is a processor identifier, u is of the same type as z,, and k is a
non-negative integer. Let dist7(p, ¢) be the minimum number of links contained in a path
between processors p and ¢ in topology 7; the third component of a tuple is intended to
represent the dist-value for the processor named in the tuple’s first component. We make
some notational conventions in dealing with tuples: with respect to a given (global) state,
(¢, 24, k) is a tuple whose second component contains the current value of field z,. In proofs
and assertions, we specify tuples partially: (g,,) € e, is the assertion that processor p’s
e-field contains a tuple with ¢ as its first component. Each processor uses local variables
A and B that range over the same set of tuples that e, does. For field image e, and set
variables A and B, we assume that set operations are implemented so that computations
on these objects are deterministic.

The update protocol’s code uses the following definitions. Let processors(A) be the list of
processor identifiers obtained from the first components of tuples in A. Let mindist(q, A) be
the first tuple in A having a minimal third component of any tuple whose first component is
¢ (in case no matching tuple exists, then mindist is undefined.) Define A\ \(g, *,) to be the
list of tuples obtained from A by removing every tuple whose first component is g. Define
A+ +(x,*,1) to be the list of tuples obtained from A by incrementing the third component
of every tuple in A. Define initseq(A) by the following procedure: (1) sort the tuples of
A in nondecreasing order of the third element of a tuple; (2) from this ordered sequence
of tuples, compute the maximum initial prefix of tuples with the property: if (q,u, k) and
(¢',u' k') are successive tuples in the prefix, then &’ < &+ 1. Then initseq(A) is the set of
tuples in this initial prefix.

For the update protocol, we define a distance-stable state to be any state for which (1)
each processor p has exactly one tuple (q,y, dist(p,q)) in its e, field for every processor ¢
in the network reachable by some path from p in the current topology; (2) e, contains no

19

www.manaraa.com

other tuples; and (3) each computation that starts in such a state preserves (1) and (2). A
legitimate state for the update protocol is a distance-stable state in which requirement (1)
is strengthened to: each processor p has exactly one tuple (¢, z,, dist(p, ¢)) in its e, field for
every processor ¢ — in other words, the z-field images are accurate. Figure 4 presents the
protocol.

Theorem 1 The update protocol of Figure 4 self-stabilizes in O(d) rounds.
(Proof given in Appendix).

Nowhere in the code of the update protocol is the size of the network used, nor is a
bound on the number of processors in a connected component assumed; consequently any
number of processors can be dynamically added to the system, provided processor identifiers
are unique. Moreover, the local implementation of operations on processor variables A, B,
and even the field e, can use dynamic memory allocation. The following lemma shows that
dynamic memory operations do not use unbounded amounts of memory.

Lemma 8.1 For any computation ® of the update protocol, no processor requires more
than O(A - K - n) space for variables and register fields, where in the initial state of ®: A
is the maximum number of neighbours a processor has; n is the number of processors; and
K is the maximum number of tuples of any processor’s A, B or e-field in the initial state

of ®.

Proof: The computation of B consists of at most n/ tuples, since tuples with duplicate
identifiers are not added to B by C8 and the number of identifiers is bounded by nk.
Moreover, no statement is capable of introducing a tuple with a processor identifier not
already present in another tuple. Hence any assignment by C10 places at most nK tuples
in e,. The collection procedure to construct A is the union of at most A sets of at most
nk tuples (K tuples in the first round, and nK tuples in subsequent rounds). O

Although the lemma shows that the update protocol does not use unbounded space in its
computation, this is insufficient for a self-stabilizing implementation: suppose processors are
implemented on machines with fixed memory limits and an initial state of a computation is
such that the number of tuples is at or near the memory limit; subsequent computation may
then abort by exceeding the memory limit in a dynamic allocation request. Therefore, in
order to claim that the update protocol is self-stabilizing, we assume that every trajectory’s
initial state satisfies n &K < A, where N is some appropriate limit related to memory limits
of processors (even if the abort resets memory, some minimal amount of memory is needed
to guarantee self-stabilization of the update protocol).

Note that upon stabilization, the e, register contains only those tuples representing
reachable nodes in the network. Therefore the amount of memory needed for e, can be
dynamically adjusted during a computation to the minimum amount needed to represent

20

www.manaraa.com

the list of tuples; this idea is called memory adaptivity in [AEH92]. The following lemma is
an observation due to Gerard Tel.’

Lemma 8.2 The update protocol of Figure 4 is memory-adaptive.

Proof: Upon stabilization, the necessary size of the e-field is bounded by a function of
the number of processors. |

A corollary of self-stabilization is that, if one of the z, fields is dynamically changed,
the protocol will effectively broadcast the new z, value to other processors. Of particular
interest are some properties that relate a sequence of changes to an z, field to the sequence
x, values observed at another processor g. We distinguish three monotonicity properties of
an update protocol:

Static Monotonicity. Let o be a legitimate state for the update protocol where
T, = cg at 0. Suppose ® is a topology-constant computation originating with
state o and suppose field z, is changed at distinct states 61, 62,... of ® to have
the values ¢q, €2, . . ., where state 6; occurs before é; for7 < j. Static monotonicity
is satisfied if, for any states p and v in ® such that p occurs before 7: if processor
q sees ¢; as the value of z, at state p and sees ¢; as the value of z, at state v,
then 7 < j holds.

Dynamic Monotonicity. Let o be a legitimate state for the update protocol
where 2, = ¢ at 0. Suppose ® is a trajectory originating with state o and
suppose field z, is changed at distinct states 01, 62,... of ® to have the values
€1,¢z,. .., where state 6; occurs before ¢; for + < 7; ® may have topology changes
interleaved with steps of processors, including possibly the crash and recovery
of processor p. Dynamic monotonicity is satisfied if, for any states p and v in ®
such that p occurs before 7v: if processor g sees ¢; as the value of z, at state p
and sees c¢; as the value of z, at state v, then 7 < j holds.

Impulse Monotonicity. Let o be a legitimate state for the update protocol in
a topology 7 where 2, = ¢o at 0. Let A be the state obtained by making
a single topology change & to 7 and the assignment z, := ¢;. Let @ be a
topology-constant computation originating with state A. Impulse monotonicity
is satisfied if, for any states p and v in ® such that p occurs before 7: if processor
q sees cq as the value of x, at state p, then ¢ sees ¢; as the value of z, at state

v.

Note that with static and dynamic monotonicity, we admit the possibility of “overwriting”
of z,, before its value is successfully broadcast to all processors; however, a subsequence of
FIFO-delivery is guaranteed by monotonicity. If z, is changed “slowly enough”, meaning

®Remark during presentation, December 1993.

21

www.manaraa.com

that the protocol successfully stabilizes between changes to z,, then a FIFO broadcast of
zp-values is obtained. In Section 9, we introduce an acknowledgement mechanism so that a
processor does not change the broadcast value of interest until all other processors within
a connected component have received the current value. The acknowledgement mechanism
does not itself guarantee FIFO broadcast — monotonicity is also required. As indicated in
following theorems, the update protocol satisfies static and impulse monotonicity, but not
dynamic monotonicity; further measures are introduced in the next section to deal with the
lack of dynamic monotonicity.

Theorem 2 The update protocol of Figure 4 enjoys static monotonicity.

The theorem can be proved by induction on a lexicographic measure composed of path
length and the ordering of links by a processor’s neighbourhood; essentially the deterministic
ordering of links defines a broadcast tree. Our general method does not exploit static
monotonicity, so we omit details of the proof.

In the sequel, for dynamic and impulse monotonicity, we make a restriction on a topology
change event & that adds a node p to the network: the e,-field contains no tuples. Given
this restriction, the following monotonicity theorems hold.

Theorem 3 The update protocol of Figure 4 enjoys impulse monotonicity.
(Proof appears in appendix, Section 12.)

Theorem 4 The update protocol of Figure 4 does not satisfy dynamic monotonicity.

A counter-example provides proof of this theorem and is presented in an appendix (Section
12). This counter-example actually shows that the update protocol does not satisfy even
more restricted forms of dynamic monotonicity: the example is constructed with a single
initial topology change and no further topology changes, and only two changes to a register

field.

9 General Superstabilization

This section introduces a general method for achieving superstabilization with respect to the
class A of single topology changes. Qur general method can be seen as a compiler that takes
self-stabilizing protocol P and outputs a new protocol P’ that is both self-stabilizing and
superstabilizing. This is done by modifying protocol P and superimposing a new component
called the superstabilizer.

The superstabilizer makes use of function F, described in Section 5, to determine a new

legitimate state for protocol P following a topology change £. It is the responsibility of

22

www.manaraa.com

C1

C2

C3

C4

C5

C6

Ccr

C8

C9

C10
C11

A B:=0,0

forall ¢ € N,
do
read(q)
A:=AUg¢
od

A=A\ \(p,*,%*)
A=A+ +(x,%,1)

forall ¢ € processors(A)
do
B := B U {mindist(q, A)}
od

B = BU{(p,p,0)}
e, := initseq(B)
write

Figure 4: Update Protocol for Processor p.

23

www.manharaa.com

the superstabilizer to “hide” & from any processor in such a way that no user of protocol
P can observe a state inconsistent with the current topology; this is done by making the
global transition between legitimate states for different topologies effectively atomic, thus
sparing procotol P from any stabilization effort. Thus the passage predicate for general
superstabilization is a filter-based predicate.

The general method is a result primarily for the qualitative aspect of superstabilization;
the superstabilization time is O(d), which may not improve over the self-stabilization com-
plexity of the original protocol P; however, the general method does make possible minimal
adjustment following a topology change and provides the added benefit of a filter predicate
that can be used by a consumer of P’s service to delay use of the service during adjustment
following dynamic change.

The superstabilizer consists of two components, a modified version of the update protocol
and an interrupt statement. Atomic steps of P and the update protocol are then interleaved.
We modify P, as follows: each action of P at processor p is guarded by a boolean variable
Jreeze, so that when freeze, holds, no action of P is enabled at processor p and the program
counter remains static. Our superstabilizer insures that, starting from any initial state, all
freeze fields eventually become false in the absence of topology changes.

The interface between the superstabilizer and P at processor p consists not only of the
Jreeze,, variable, but a pseudo-variable snap,,, which is defined to be the collection, with
respect to protocol P, of all local variables, shared fields, and the program counter of P
for processor p. The superstabilizer can read and write snap,. We denote by snap a set of
snap,, variables, one for each processor. Our general method is, in brief, the following: after
a topology change, P is frozen at all processors and a snap value is recorded; subsequently
a snap value appropriate for the new topology is computed and each frozen processor is
assigned its portion of the new snap value; and finally all processors are thawed.

Our programming notation given in Section 2 makes local images of register fields avail-
able to program operations: such images can be of a processor’s own register or that of its
neighbouring processors; for example the code of Figure 4 permits processor p to refer to
e, for ¢ € N,. The update protocol makes an image of each processor’s z-field available
to every other processor within a connected component. For convenience in describing the
superstabilizer, we divide the z field into four subfields:

xp = [aphytyuy]

We then extend the programming notation to allow any processor to refer to subfields
of any other processor. Thus processor p can refer to a, for any ¢ € processors(e,) by
using images provided in the e-field’s tuples. Of course, these images may be out-of-date,
which necessitates synchronization measures in the superstabilizer; such synchronization is
achieved in phases to coordinate freezing and snapshots.

To control the phases of superstabilization, the subfield a, is used; it is a ternary-valued
subfield provided for the three phases of superstabilization. These phases are:

24

www.manaraa.com

Phase 0 is the normal state of the superstabilizer, in which protocol P is active and the
superstabilizer is idle. When (Vp :: a, = 0) holds, we consider the superstabilization
to be inactive (terminated).

Phase 1 consists of freezing protocol P and collecting snapshots from the frozen processors;
also in this phase an election takes place among all processors incident on a topology
change to determine a single coordinator of the following phase. Phase 1 is active if
(Ip: ap, =1)and (Vp:: a, <1).

Phase 2 is concerned with computing a new global state for protocol P and distributing
the new state to all processors. Phase 2 is active if (dp ' a, = 2), remains active

until (Vp :: @, = 2) holds, and thereafter terminates in order to resume execution of
Phase 0.

To detect progress of phases, we employ an acknowledgment subfield %,. This subfield
is a vector of ternary values whose elements are images known to p of other processor a-
subfields: the protocol sets hy[r] to contain the image of a,, as determined from p’s image
of x, broadcast via the update protocol. Further, since %, is broadcast via the update
protocol to every processor, it is possible for a processor r to test the status of every other
processor’s image of «a,.

In addition to the a and h-subfields, we define additional subfields of z, to contain snap
values. Subfield ¢, contains a value of type snap,, which is the portion of the state of p
that is related to P. We also define the subfield u, to contain a global snap value, i.e. u,[r]
contains a snap, value. We denote by s, the collection of all ¢, images obtained from z,

subfields.

To make a concise presentation, an additional device is used in the code of the interrupt
statement. The function refresh(e,) reproduces e, except that the value of the z, field is

updated, i.e. refresh(e,) = (e, \ \(p,*.,%)) U {(p,z,,0)}.

The interrupt statement for the superstabilizer is given in Figure 5. In response to a
topology change & incident on processor p, the program counter of the protocol is reset to
S1, the neighbourhood N, is adjusted to reflect £, and the write operation is atomically
executed. This operation halts P by setting freeze, to true.

The remaining component of the superstabilizer consists of the combination of Figures
4 and 6, i.e. a modified update protocol. Statements Ul-U8 should be inserted between
statements C6 and C7 to obtain the complete protocol. All quantifications over processors
in expressions (such as (Vg : a, = 0)) are implicitly quantified over processors(A) U {p} in
the superstabilizer code. Some motivation for statements U1-U8 is given by:

Ul represents the election of a single coordinator from all the processors incident on the
topology change event £. Although all incident processors execute S1 and set a, = 1,

all but one of processor per connected component will revert back to a, = 0 upon
detection of a competing coordinator with a higher identity.

25

www.manaraa.com

U2 is the transition from Phase 1 to Phase 2. This occurs when p is coordinating Phase
1 and detects that every other processor has either acknowledged Phase 1 or appears
to have already acknowledged Phase 2 (because of an illegitimate initial state). At
statement U2, a new global state is computed using adjustment function F, based on
the collected snapshots of all acknowledging processors.

U3 is the transition from Phase 2 back to Phase 0. This occurs when p is coordinating
Phase 2 and detects that every other processor has either acknowledged Phase 2 or
appears to have already acknowledged Phase 0 (because of an illegitimate initial state).

U5 acknowledges Phase 0.

U6 acknowledges Phase 1, but only if it appears that the last known phase for a coordi-
nating processor was Phase 0. This will make the transition from Phase 1 to Phase
2 monotonic, since processors will not switch allegiance back to Phase 1 after seeing
Phase 2.

U7 acknowledges Phase 2, but only if it appears that the last known phase for a coordi-
nating processor was Phase 1. This will make the transition from Phase 2 to Phase
0 monotonic, since processors will not switch allegiance back to Phase 2 after see-
ing Phase 0. The step U7 also adopts a new local state as provided by the phase
coordinator.

U8 insures that processors set freeze bits so long as there is phase activity by some coor-
dinator.

Note that processors react to superstabilization phases as soon as they are made available
via the update protocol; in particular, as soon as a (possibly distant) topology change is
visible, the code of Figure 6 freezes protocol P and records a snapshot.

The combination of the superstabilizer and modified protocol P results in a supersta-
bilizing protocol P’. A legitimate state for P’ is any state in which: (1) the variables,
fields and program counter with respect to P satisfy £; (2) the update protocol component
of the superstabilizer is in a legitimate state (all e-fields have accurate tuples); (3) every
freeze variable is false, (Vp :: a, = 0); and (4) each computation that starts in such a state
preserves (1)—(3).

Lemma 9.1 The predicate f, = freeze, is a filter predicate for the superstabilizer; and
the superstabilizer converges in O(d) rounds to (Vp:: = f,).

Proof: First we show that the protocol stabilizes to a, = 0 for every p in any computation;
after such stabilization, it follows by self-stabilization of the update protocol that in O(d)
rounds, every image of a, is also accurate. Then in one additional round statement U8 is
executed at every processor, which implies stabilization to (Vp :: = f,).

26

www.manaraa.com

To show that the protocol stabilizes to (Vp :: a, = 0), consider an arbitrary computation
®. Observe that no statement of the code in Figure 6 can assign to a, in the case that
a, = 0 is a precondition; in other words, a, = 0 is locally stable. Therefore it suffices to
show that eventually a, = 0 is obtained for every p.

Suppose, heading for contradiction, that a, # 0 holds for p € D throughout ®, where D
is some non-empty set of processors. Let € be a suflix of ® in which no processor assigns
a, = 0. Thus statements Ul and U3 are not executed by any processor in Q. After O(d)
rounds of 2, all a, images accurately and permanently allow any processor p to test a, = 0
for any known r; let ¥ be the suffix of Q with this property. Observe that |D| = 1 in
Q if the network’s topology is connected. This follows because after O(d) rounds of Q, if
a, # 0 and a, # 0 for p # 7, then statements U6 and U7 executed at all processors insure
(Vs it hg[p] # 0) and (Vs = hg[r] # 0); following another O(d) rounds, the images of all
h-fields are broadcast to p and r, which implies statement U1 is executed for one of the two
processors, leading to a contradiction. Hence there is at most one processor p satisfying
a, = 1 in any connected component in computation . If a, = 1 then eventually the image
of a, is broadcast by the update protocol and via the acknowledgement of U6, the predicate
(Vg hylp] # 0) holds and p can detect this using images of the h, fields. That is, either
a processor ¢ will acknowledge a, = 1 or permanently retain hy[p] = 2. In either case,
eventually U2 is executed for p. And if a, = 2 then by a similar argument, U3 is eventually
enabled, but this contradicts the definition of D.

That f, is a filter predicate is shown by the above contradiction. It remains to show
that convergence to (Vp :: =f,) occurs in O(d) rounds of any computation. In the case
where a processor p is the only processor satisfying a, # 0 within a connected component,
the same update/acknowledge arguments given above show that in a constant number of
broadcasts via the update mechanism, the protocol stabilizes to a, = 0, which implies O(d)
convergence. In the case of numerous, competing processors satisfying a, # 0, we appeal to
arguments about statement Ul to conclude that a winner among the competing processors
is obtained in O(d) rounds. a

Lemma 9.2 The general method self-stabilizes in O(d 4+ K') rounds, where O(K) is the
worst-case stabilization time of P.

Proof: After O(d) rounds, by Lemma 9.1, all freeze bits are permanently false in any
computation. Thereafter the superstabilizer component does not hinder progress of protocol
P, which reaches legitimacy by assumption in O(K’) rounds. |

Lemma 9.3 The protocol of Figures 5 and 6 is superstabilizing with superstabilization

time O(d).

Proof: Lemma 9.2 shows that the protocol is self-stabilizing; it remains to show for any
trajectory beginning from a legitimate state followed by a single topology change, that in

27

www.manaraa.com

every state of the computation any set of processors with false filter predicates is locally
legitimate. The proof has the following structure. The computation following a topology
change can be divided into three segments. In the first segment, the set of all processors
with f, = false is locally legitimate with reference to the initial topology of the trajectory.
In the second segment, (Vp :: f,) holds. In the third segment, the set of all processors with
fp = false is locally legitimate with reference to new topology.

Let @ be a trajectory with initial state 6 - £ and initial transition due to some topology
change event & resulting in a second state . Let ¥ be the suffix of ® beginning at state
o (¥ is a fair computation). Let H be the set of processors for which there exists a path
in 7.6 to some processor incident on £. All our reasoning about local states is confined to
processors in H since if the network is partitioned throughout ®, processors in components
not related to & trivially remain in legitimate states with false filter predicates. Let H|[r]
for any r € H denote the maximum subset G C H such that » € G and the processors of G
are connected in 7.0. In case there are r,s € H so that H[r] # H[s], then we may reason
about the superstabilization of the components corresponding to H[r] and H[s] separately
for the proof of superstabilization, since these components are not connected in 7.0. For
any r € H, let leader.H[r] be the processor v with maximum identity such that v € H|[r]
and v is incident &.

The remainder of the proof is organized into six claims. To streamline the proof, we con-
sider an arbitrary set of processors H[r] and computations of these processors. Let v be
leader.H[r]. The following predicates are defined for the claims:

Phy = a,=1 (Vg: g#v: a;,=0) A

Ph2 = Oy = 2 A
Claim 1: The following temporal® property is claimed for W: for any processor p, a, = 1
holds continuously in ¥ until processor p either observes Phy or observes (a, =1 A (Vr
h.lq] = 1)) for some ¢ > p (note that just because p observes a condition from its images
of other processor’s @ and h fields does not imply that the condition holds over the actual
fields). The claim is a consequence of the conditions on statements Ul and U2.

A corollary of Claim 1 is that a, = 1 holds until v observes Phy; moreover, when v observes
Phy, it follows from U6 and U8 that, for every p, f, holds at some previous state in . This
observation is strengthened by the following claim.

Claim 2: For any processor p, f, holds continuously in ¥ until processor v observes Phy.
Statement U8 sets freeze, in the presence of some image a, = 1. Therefore we strengthen
the claim to: processor p observes (3¢ :: a, = 1) holds continuously in ¥ until processor
v observes Phy. Consider that a processor p observes some a, = 1 for some ¢. By impulse
monotonicity of the update protocol, the image a, = 1 is stable so long as processor ¢ does

A definition of the until operator can be found in [CM88].

28

www.manaraa.com

not change a,. The only statements capable of changing a, from the value 1 are statements
Ul and U2. Statement U2 may change a, only if every processor in H[¢] has acknowledged
a, = 1; if ¢ = v and statement U2 changes a,, then v observes Phy, and the claim holds;
if ¢ # v and statement U2 changes a,, we have a contradiction since Ul is not executed
in the same cycle and ¢ is not the maximum identifier having a, = 1. Therefore consider
statement UL. If a, is changed by U1, some other processor r with a larger identifier appears
(at) to satisfy a, = 1 and (Vs = hg[r] = 1) holds. Thus a processor ¢ cannot change q,
from 1 to 0 until first detecting that some other processor r of larger identifier has a, = 1
and every processor has observed a, = 1 at some point in computation ¥. By induction,
the predicate (ds :: a; = 1) as determined by images at every processor in H[v] is stable
at least until a, is changed from 1 to 0.

Claim 3: In O(d) rounds, a state satisfying Phy is obtained; moreover, when v observes
Phy, then Phy holds and s, contains a valid snapshot of the processors of H|[r]. Claim 2
shows that f, is stable for every p € H|[v] at least until Phy is observed by v (and Claim 1’s
corollary shows that f, holds at every p). Consider any computation © beginning at state
o so that Phy is not observed by v at any state. Induction over distance from v is now used
to prove

(Vg fy A hylv]=1) (1)

i.e. in round k 4 1 all processors ¢ at distance k from v satisfy the term of (1). The basis
of the induction is distance zero: in state o, from the interrupt statement, f, holds, and
after one round h,[v] = 1 holds, by the assumpion of a legitimate state for 6, meaning
6 F hy[v] = 0. For the induction, suppose the term of (1) holds for all processors at distance
k from v following round k + 1. In round k + 2, any processor ¢ at distance k + 1 from v
will read a tuple (v,, k) from a neighbour and update its own tuple for fields corresponding
to v, therefore setting f, and hyfv] = 1.

To complete proof of the Claim 3, we observe that a,, = 1 in state ¢ and continues to hold at
least until processor v observes (Vg :: hy[v] = 1). However, for any competitor of v, namely
a processor r so that a, = 1 in state o, the same cycle wherein h,[v] := 1 occurs also sets
a, := 0 at statement Ul. Statement Ul makes no assignment for processor v by assumption
of »’s maximum identifier. Finally, we observe that within computation @ the predicate
hq[v] = 1 is stable since a, = 1 is stable at least until (1) holds and the image a,, = 1 at any
processor is stable by impulse monotonicity of the update protocol. Statement U8 insures
that f, is set and a snapshot is taken.

Claim 4: Let ¥’ be the segment of ¥ identified by Claim 2, that is, ¥’ begins at state
o and ends at some state where v observes Phy. The state a following the final state of
VU’ is obtained by the execution of U2, which sets a, := 2 and computes a new state for
the processors in H[v]. Let Q be the segment of ¥ beginning at state «. Claim: for any
processor p, f, holds continuously in Q until processor v observes Phy; also hy[v] = 2 holds

29

www.manaraa.com

continuously in € until » observes Phy. To show this claim, we consider any p and show
that h,[v] = 1 holds until hy[v] = 2, and hy[v] = 2 holds at least until v observes Phy. At
the initial state of Q, h,[v] = 1 holds for any p # v by construction. Now consider some
processor that changes h,[v] from 1 to 2 in Q. This can only be due to execution of U7;
although the update protocol is not monotonic in the broadcasted change of @, from 1 to
2, statement U6 does not assign 1 to hy[v] for any processor that has already executed U7
in Q. Thus the change to h,[v] is monotonic within Q. Also, although images of a, may
switch between 1 and 2 during the course of €, the predicate a, # 0 remains stable, hence
U8 cannot assign false to the freeze variable.

Claim 5: Within O(d) rounds of computation €, a state satisfying Ph is obtained; more-
over, when v observes Phy, then Phy holds and every processor in H[v] has adopted the
portion of the state computed by v via U2 at the state prior to Q. Claim 4 shows that
fp is stable for every p € Hv] at least until Phy is observed by v». Claim 4 also shows
that h,[v] = 2 is stable until v observes Phy. Since initially, hy[v] = 1 holds at every p,
the observation of (Vp :: hy[v] = 2) implies each processor p has acknowledged the second
phase and adopted a new state of protocol P via statement U7. The O(d) round complexity
can be shown by induction, similar to the argument given for Claim 3.

Claim 6: Let X be the segment of ¥ identified by Claim 5, beginning after execution of
U3 at processor v. The claim is that for any processor p, h,[v] = 2 holds continuously in Q
until A,[v] = 0, that h,[v] = 0 is stable, and h,[v] = 0 is detected by p within O(d) rounds.
First observe that a corollary of Claim 5 is that no image of a, satisfies a, = 0 at the initial
state of 3. Now the logic of statements U5 and U7 prove the claim. After a processor p
assigns h,[v] = 0 via U5, subsequent execution of U7 is inhibited. Thus the switch from
hplv] = 2 to hy[v] = 0 is monotonic. The O(d) round complexity can be shown by induction
on distance from wv.

Claims 1-6 together divide a computation following a topology change into segments. Once
a processor p satisfies f,, then f, holds until p has received and assigned a new state for
P; subsequently f, continues to hold until = f, holds (implied by Claim 6), and then = f, is
stable. The time for this computation is O(d) rounds.

To complete the proof of superstabilization, we consider subsets D = {p|p € H[v] A =f, }
and verify that D is locally legitimate. For the segment @, each processor p for which - f,
holds may execute protocol P. We show that local legitimacy holds for D by structural
induction. The basis of the induction is the initial state o, where all processors incident
on &£ have P-states that are legitimate for 7.6. For the induction, we consider execution
of protocol P within ©. With regard to protocol P, a processor p may communicate with
neighbours. Such communications fall into two categories: if p executes a read of a neighbour
processor ¢ for which = f, holds, then —f, holds continuously from the initial state of ® up
to that step; and if f, holds, then ¢’s state and registers with respect to protocol P are those

30

www.manaraa.com

S1 write
ap = 1
Jreeze, = true
tp ‘= snap,
. o { 0] if & =recov,
b o refresh(e,) if & # recov,

Figure 5: Superstabilizer: Processor p Interrupt Section.

of 7.6 by the inductive hypothesis. This argument discharges the proof of superstabilization
for segment ©; segment need not be examined, since (Vp :: —f,) holds at all states. It
remains to examine D with respect to segment . This is a simple matter since at the
initial state of X, each processor p has a local state legitimate to 7.0, and the setting of
fp := false is implied monotonic by Claim 6. O

10 Continuous General Superstabilization

This section introduces a general method for achieving continuous superstabilization with
respect to the class A of single topology changes (link or processor crash or recovery). The
method described in this section is a generalization of the technique used in Section 9. The
main difference is lies in the synchronization of multiple topology changes, which is achieved
through the use of incarnation numbers associated with topology changes.

The general method for superstabilization described in Section 9 relies on the impulse
monotonicity of the update protocol to coordinate the transition from a legitimate state in
one topology to a legitimate state in another topology. In the presence of multiple topology
changes between computations of a trajectory, or if a topology change should occur following
a computation that has not yet reached a legitimate state, then impulse monotonicity is
not strong enough to guarantee orderly coordination of the snapshot and reset mechanism.
In order to enforce monotonicity of the update protocol, we introduce incarnation numbers
associated with each topology change (and use processor identifiers to break ties).

The general method for continuous superstabilization is structured like the method of
Section 9: it can be seen as a compiler that takes self-stabilizing protocol P and outputs
a new protocol P’ that is both self-stabilizing and continuously superstabilizing. The su-
perstabilizer consists of two components, a modified version of the update protocol and an
interrupt statement. For convenience in describing the superstabilizer, we divide the z field
into six subfields:

xp = [ap hy by gp tp uy]

31

www.manaraa.com

U1

U2

U3

U4

us

ué

u7

us

if (ap=1A (3¢ ag#0 A g>p A (Vra hlg] #0)))
then a, := 0

if (ap=1A (Vg: ¢q#p: agz=0) N (Vg hy[p] #0))
then a,, u, = 2, F(s,)

if (ap, =2 A (Vg hylp] # 1))
then a, := 0

forall ¢ € processors(A)U {p}

do

if a,=0 then] := 0

if a; =1 A hylg]=0 then B¢ := 1

if a, =2 A hylg] =1 then hylq], snap, = 2, u,[p]
od

if (d¢ € processors(A) U {p} :: a, #0)
then freeze,, t, := true, snap,

else freeze, false

Figure 6: Superstabilizer: Update Extension for p.

32

www.manharaa.com

To control the phases of superstabilization, the subfield a, is used; it is a ternary-valued
subfield provided for the three phases of superstabilization, as described in Section 9. Other
fields are also as described in Section 9, with the exception of b, and g, fields, which are used
for the incarnation numbers. The field b, is an unbounded integer, used as a timestamp to
synchronize concurrent topology changes. Intuitively, each topology change causes incident
interrupt statements to initiate Phase 1 with an incarnation number (the timestamp b,) that
is greater than any previously known incarnation number. Processors under the control of
multiple phase coordinators, possibly due to concurrent topology changes, should follow
only the snapshots and resets from the coordinator having the largest incarnation number
(breaking ties by processors’ identifiers). The bookkeeping to insure that the most recent
topology change has the largest incarnation number requires a recording technique similar
to that used for phase coordination: g, is a vector of integers whose elements record the
largest b, values observed by processor p.

The interrupt statement for the superstabilizer is given in Figure 7. In response to a
topology change & incident on processor p, the program counter of the protocol is reset to
S1, the neighbourhood N, is adjusted to reflect £, and the write operation is atomically
executed. This operation halts P by setting freeze, to ¢rue. Note that the interrupt step
increments b, to obtain a new incarnation number.

The remaining component of the superstabilizer consists of the combination of Figures
4 and 8, i.e. a modified update protocol. Statements U1-U12 should be inserted between
statements C6 and C7 to obtain the complete protocol. To simplify presentation, the nota-
tion maxb, is introduced:

maxb, = max({b,} U {b,| ¢ € processors(e,)} U {g,[q]| ¢ € processors(e,)})

Thus maxb, represents the maximum incarnation number known at processor p.

The code of Figure 8 essentially consists of two parts: statements Ul-U4 keep the
incarnation numbers of various processor consistent; statements U5—U12 control the phases
of superstabilization. In particular:

Ul insures that an idle processor copies the largest known incarnation number.

U2 s a kind of election: if a processor is coordinating the phases of superstabilization, but
encounters another competing processor with a larger incarnation, then it abandons
superstabilization (yielding to the larger incarnation).

U3 covers a case not normally possible starting from a legitimate state: a processor
coordinating the phases of stabilization encounters an idle processor with a larger
incarnation number; in this case, the coordinating processor restarts the phases using
a new, higher incarnation number. Statement U3 is crucial to the self-stabilizing
property of the superstabilizer — coordinating processors are guaranteed to eventually
become idle (in the absence of topology changes).

33

www.manaraa.com

U4 essentially repeats the logic of U2, but the election occurs because two competing
processors have the same incarnation number: the one with the larger identifier wins.

U5 is the transition from Phase 1 to Phase 2 by the coordinating processor; this occurs
when every processor has acknowledged Phase 1 and transmitted a snapshot. Here a
new global state is computed and broadcast via u,.

U6 is the transition from Phase 2 back to Phase 0. This transition also produces a new,
higher incarnation number. The incremented incarnation number helps in insuring
monotonicity in the broadcast of register fields via the update protocol.

U8 shows how p keeps track of the incarnation number of every processor ¢. Thus g¢,[¢]
represents the largest incarnation number recorded by p for processor ¢. If b, is lower
than expected at processor p, then p will refrain from acknowledging Phase 0 by g.

U9 is where p acknowledges that ¢ is in Phase 0, but only if ¢ has a reasonable (not too
low) incarnation number. This is the trick to make things monotonic, as far as phases
go — recall that the interrupt atomically increments b, and sets Phase 1, so no process
will go back to Phase 0 once it records a larger incarnation number in g,[q].

U10 is the acknowledgement of Phase 1; this is only permitted when the coordinating
processor appears to be in Phase 0 (to insure monotonicity of phase transition).

U1l is the acknowledgement of Phase 2 and adopting a new local state set by the coor-
dinating processor of Phase 2. Note that Phases 1 and 2 are monotonic — once a
processor acknowledges Phase 2, it will ignore any news of Phase 0 or Phase 1 from
that processor at the current incarnation number.

U12 insures that any phase activity freezes a processor.

The combination of the superstabilizer and modified protocol P results in a superstabilizing
protocol P’. A legitimate state for P’ in a topology 7 is any state in which: (1) the variables,
fields and program counters with respect to P satisfy L£7; (2) the update protocol component
of the superstabilizer is in a legitimate state (all e-fields have accurate tuples); (3) every
freeze variable is false, (Vp :: a, = 0); and (4) each computation that starts in such a state
preserves (1)—(3).

Lemma 10.1 The predicate f, = freeze, is a filter predicate for the protocol; and the
protocol converges in O(d) rounds to (Vp:: = f,).

Proof: We show the stronger property that the protocol stabilizes to a, = 0 for every p
in any computation; after such stabilization, it follows by self-stabilization of the update
protocol that in O(d) rounds, every image of a, is also accurate. Then in one additional
round statement U12 is executed at every processor, which implies stabilization to (Vp ::

_‘fp)-

34

www.manaraa.com

To show that the protocol stabilizes to (Vp :: a, = 0), consider an arbitrary computation
®. Observe that no statement of the code in Figure 8 can assign to a, in the case that
a, = 0 is a precondition; in other words, a, = 0 is locally stable. Therefore it suffices to
show that eventually a, = 0 is obtained for every p.

Suppose, heading for contradiction, that a, # 0 holds for p € D throughout ®, where D
is some non-empty set of processors. Let € be a suflix of ® in which no processor assigns
a, := 0. Thus statements U2, U4 and U6 are not executed by any processor in . After O(d)
rounds of 2, all a, images accurately and permanently allow any processor p to test a, = 0
for any known r; let ¥ be the suffix of with this property. We now claim that maxb,
is bounded for any processor p in computation ¥. Only two statements, U3 and U6 can
increment an incarnation number, but U6 is eliminated from consideration by assumption.
However if U3 is executed by p, then processor p is the only processor with a, # 0. After
O(d) rounds of V¥, all b, images for r # p are accurate. Thus U3 is executed a finite
number of times at processor p. Let T be the suffix of ¥ in which U3 is not executed by
any processor. Observe that |D| = 1 if the network’s topology is connected. This follows
because after O(d) rounds of T, all b, images are permanently accurate and if a, # 0 and
a, # 0 for p # r, then one of statements U2 or U4 will execute, which is a contradiction.
Hence there is at most one processor p satisfying a, = 1 in any connected component in
computation Y. If @, = 1 then eventually the image of a, is broadcast by the update
protocol and via the acknowledgement of U10, the predicate (Vg :: hy[p] # 0) holds and p
can detect this using images of the f, fields. That is, either a processor ¢ will acknowledge
a, = 1 or permanently retain hy[p] = 2. In either case, eventually U5 is executed. And
if a, = 2 then by a similar argument, U6 is eventually enabled, but this contradicts the
definition of D.

That f, is a filter predicate is shown by the above contradition. It remains to show that
convergence to (Vp :: = f,) occurs in O(d) rounds of any computation. In the case where a
processor p is the only processor satisfying a, # 0 within a connected component, the same
update/acknowledge arguments given above show that in a constant number of broadcasts
via the update mechanism, the protocol stabilizes to a, = 0, which implies O(d) convergence.
In the case of numerous, competing processors satisfying a, # 0, we appeal to arguments
about maxb, and statements U2 and U4 to conclude that a winner among the competing
processors is obtained in O(d) rounds. |

Lemma 10.2 The protocol is self-stabilizing and converges in O(d+ K') rounds where the
protocol P self-stabilizes in O(/') rounds.

Proof: Lemma 10.1 shows that after O(d) rounds, all freeze bits are permanently false.
Thus after O(d) rounds the superstabilizer does not interfere with protocol P, which then

self-stabilizes in O(K) additional rounds. a

Lemma 10.3 The protocol of Figures 7 and 8 is continuously superstabilizing with su-
perstabilization time O(d).

35

www.manaraa.com

Proof: To prove the lemma, the proof of Lemma 9.3 need only be modified so that safety
conditions (“until” properties) account for larger incarnation numbers encountered during
phase processing. The invariant is to show: for any set D of processors such that D
represents a connected subgraph and f, is false for all p € D: all processors have equal
incarnation numbers (b, fields) and that o[D] is locally legitimate. This invariant must
hold over a trajectory with any number of topology changes. The definition of H[r] is that
given in the proof of Lemma 9.3. With respect to state o and processor r, let leader.H|[r]
be the processor v with maximum identity such that » € H[r], v is incident on a topology
change £ prior to state o, and b, has the maximum incarnation number of any processor in
H{[r]. Definitions of Phy; and Phy are modified to include incarnation numbers:

(Vg: q#v: a;,=0)
(Vg: q#v: a;,=0)

Phl = Oy =

1 A 1 A
Phy = a,=2 AN (Vg hylv] =2 A

Claims roughly equivalent to those given in the proof of Lemma 9.3 are:

1. For any processor p, a, = 1 holds until either p observes Phy or p observes (a, =
1 A (Vr::hylq) = 1)) for some processor ¢ > p and b, = b,, or p observes b, > b, for
some ¢ satisfying a, # 0.

2. For any processor p, f, holds until v observes Ph;.

3. For a constant K, following a topology change, there are no additional topology
changes for Kd rounds, a state satisfying Phy occurs; and if topology changes occur
within Kd rounds, the leader v either changes identity or increases its incarnation
number.

4. If there are no topology changes for K'd rounds following v observing Phy, then v ob-
serves Phy; and if there is a topology change within Kd rounds, then either leadership
changes or incarnation number increases.

5. If v observes Phg, then either a, = 0 for all p within Kd rounds, or the leadership
changes due to a topology change.

The claims are seen to allow for leadership change during a trajectory due to topology
change. We do not prove the claims in detail, since the arguments are the same as those
made in the proof of Lemma 9.3 provided no leadership change occurs. The primary concern
for showing correctness is that leadership changes are properly managed.

Suppose v is leader.H[r] and a topology change occurs. At the instant of the change, v
can be coordinating any one of the phases.

Phase one: If the topology change occurs at any state up to when v observes Phy, we can
assert that a, = 1 is acknowledged by any ¢ only if b, = b, and a snapshot is recorded;
at such a state, there are two possibilities for incidence on the topology change: (1) the

36

www.manaraa.com

S1 write
ap, b, = 1,b,+1
Jreeze, = true
tp ‘= snap,
. B { 0] if & =recov,
b B refresh(e,) if & # recov,

Figure 7: Continuous Superstabilizer: Interrupt Section for p.

processor incident on the change has not acknowledged a, = 1 and can have b, # b,. If b, >
b, then a new leader is defined and we appeal to structural induction for safety properties
of the new leader; if b, < b, then the leadership does not change and the update algorithm
insures that phase processing (made monotonic by incarnation numbers) continues for v;
and if b, = b, processors identities are used to decide leadership. A second possibility (2)
is that the processor ¢ incident on the change has acknowledged a, = 1, but this implies
b, > b, as a result, and leadership changes properly.

Phase two: If the topology change occurs at any state following »’s observance of Phy
(without leadership change) up to when v observes Phsg, then all ¢ € H|[r] satisfy b, = b,,.
Any topology change incident on some processor in H[r| results in a larger incarnation
number and a new leader.

To show local legitimacy for any connected set D of unfrozen processors, consider the
last snapshot distributed to processors in D in a trajectory. This snapshot is generated by
a leader v that observes Phy, which implies stability of incarnation numbers between first
and second phases; this stability guarantees that snapshot assembly is accurate and F(s,)

generates a new legitimate global state. This state is set at the instant a, := 2 and f,
holds for all processors until v observes Phy; we conclude that the subset D of processors
for which = f, holds is locally legitimate. |

11 Conclusions

There is increasing recognition that dynamic protocols are necessary for many networks.
Studying different approaches to programming for dynamic environments is therefore a mo-
tivated research topic. Although self-stabilizing techniques for dynamic systems have been
previously suggested, explicit research to show how and where these techniques are useful
has be lacking. This paper shows how assumptions about interrupts and dynamic change
can be exploited with qualitative and quantitative advantages while retaining the fault-
tolerant properties of self-stabilization. Impetus for the research described in this paper

37

www.manaraa.com

Ur if (a, =0 A maxb, >b,) then b, := maxb,

u2 i

-

(ap 0 A (g by >by, A ay #0))

then a,, b, := 0, maxb,

U3 if (a, #0 A (Fg: by >b,) A (Yg: by >b,: a;=0))
then a,, b, := 1, maxb, + 1

Ué if (@, #0 A (Jg:: by=b, AN ¢>p A a; #0))

then a,, b, := 0, maxb,

Us if (a, =1 A (Vg hy[p] #0 A gylp] =by))
then a,, u, = 2, F(s,)

U if (a, =2 A (Vg hyp) # 1 A gylp] = b))
then ap,, b, := 0, 0,41

U7 forall ¢ € processors(A)U {p}

do

us if by > gplq] then g,[q]:=b,

U9 if a, =0 A g,[q) <b, then hylq] = 0

u10 if a,=1 A hy[g]=0 then hy[q] := 1

U1l if a, =2 A hylg] =1 then hy[q], snap, = 2, u,[p]
od

U12 if (dgq € processors(A) U {p} :: a, #0)
then freeze,, t, := true, snap, else freeze, := false

P P

Figure 8: Continuous Superstabilizer: Update Extension for p.

38

www.manaraa.com

is partly inspired by the thesis that the notion of self-stabilization has wider applicability
than just fault-tolerance.

The general methods presented in Sections 9 and 10 demonstrate that superstabilization
is, in principle, applicable to any self-stabilizing protocol. These methods, coupled with
previous research devising general methods for making self-stabilizing protocols, are thus of
potential use for a wide variety of network protocols. The general methods do not deliver
optimum performance in all cases; the hand-crafted protocols of Sections 6 and 7 suggest
that further research would be useful for specific problem domains. Our intention is that
the general methods be regarded as existence proofs of superstabilizing protocols.

The examples of superstabilization in this paper happen to be protocols with O(1) and
O(d) superstabilization time. However there can be problems, not examined in this paper,
with superstabilization times between these extremes. Protocols with superstabilization
time less than d also have qualitative advantages. For instance, our general methods can
be improved not only by reducing superstabilization time for specific problems, but also
by limiting the impact of change: instead of freezing the entire network following a change
(which is the most conservative approach), it may be possible to freeze and reset only a
portion of the network.

References

[AAG87] Y. Afek, B. Awerbuch and E. Gafni, “Applying Static Networks Protocols to
Dynamic Networks,” Proc. of the 28th IFEE Symp. on Foundation of Computer
Science pp. 358-370, 1987.

[AB93] Y. Afek and G. M. Brown, “Self-Stabilization over Unreliable Communication
Media,” Distributed Computing, 7 pp. 27-34, 1993.

[ACK90] B. Awerbuch, I. Cidon and S. Kutten, “Communication-Optimal Maintenance
of Replicated Information,” Proc. of the 31th IEEFE Symp. on Foundation of
Computer Science, pp. 492-502, 1990.

[AEH92] E. Anagnostou, R. El-Yaniv, and V. Hadzilacos, “Memory Adaptive Self-
Stabilizing Protocols,” Proc. of the 6th International Workshop on Distributed
Algorithms, pp. 203-220, 1992.

[AH93] E. Anagnostou and V. Hadzilacos, Proc. of the 7th International Workshop on
Distributed Algorithms, 1993.

[AGI0] A. Aroraand M. G. Gouda, “Distributed Reset,” Proc. FST 10, Springer LNCS,
472 pp. 316-331, 1990.

[AG92] A. Arora and M. G. Gouda, “Closure and convergence: A formulation of
fault-tolerant computing,” Twenty-second Fault Tolerant Computing Sympo-
stum, 1992.

39

www.manaraa.com

[AGH90] B. Awerbuch, O. Goldreich and A. Herzberg, “A Quantitative Approach to
Dynamic Networks,” Proc. of the 9th ACM Symp. on Principles of Distributed
Computing, pp. 189-203, 1990.

[AGR92] Y. Afek, E. Gafni and A. Rosen, “The Slide Mechanism with Applications in
Dynamic Networks,” Proc. of the 11th ACM Symp. on Principles of Distributed
Computing, pp. 35-46, 1992.

[AK93] S. Aggarwal and S. Kutten, “Time Optimal Self-Stabilizing Spanning Tree Al-
gorithm,” Proceedings of the 13th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, 1993.

[AM92] B. Awerbuch and Y. Mansour, “An Efficient Topology Update Protocol for
Dynamic Networks,” Proc. of the 6th International Workshop on Distributed
Algorithms, pp. 185-201, 1992.

[APV91] B. Awerbuch, B. Patt-Shamir and G. Varghese: “Self-Stabilization by Local
Checking and Correction,” Proc. of the 32nd IFEE Symp. on Foundation of
Computer Science pp. 268-277, 1991.

[BGM93] J. E. Burns, M. G. Gouda, and R. E. Miller, “Stabilization and pseudo-
stabilization”, Distributed Computing 7, 1, pp. 35-42, 1993.

[BSW69] K. Barlett, R. Scantlebury, and P. Wilkinson. “A Note on Reliable Full-Duplex
Transmission over Half-Duplex Links,” CACM, 12(5):260-261, May 1969.

[CL&5] K. M. Chandy and L. Lamport, “Distributed snapshots: determining global
states of distributed systems,” ACM Transactions on Computer Systems, 3(1)
pp. 63-75, 1985.

[CM8S] K. M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison—
Wesley, 1988.

[Dij74] E. W. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed Control,”
CACM 17 pp. 643644, 1974.

[D092] S. Dolev, “Self-Stabilization of Dynamic Distributed Systems,” D.S¢c. disserta-
tion, Technion—Israel Institute of Technology, June 1992.

[D093] S. Dolev, “Optimal Time Self Stabilization in Dynamic Systems,” Proc. of the
7th International Workshop on Distributed Algorithms (Springer-Verlag LNCS
725), pp. 160-173, September 1993.

[DIM93] S. Dolev, A. Israeli and S. Moran, “Self-Stabilization of Dynamic Systems As-
suming Only Read/Write Atomicity,” Distributed Computing, 7 pp. 3—16, 1993.

40

www.manaraa.com

[DIMO1]

[DW93]

[GHI1]

[GMO1]

[GP93]

[KP93]

[La78]

[LL90]

[SG89)

S. Dolev, A. Israeli and S. Moran, “Resource Bounds for Self Stabilizing Mes-
sage Driven Protocols,” Proc. of the 10th Annual ACM Symp. on Principles of
Distributed Computing, pp. 281-293, 1991.

S. Dolev and J. L. Welch, “Crash Resilient Communication in Dynamic Net-
works,” Proc. of the 7th International Workshop on Distributed Algorithms, pp.
129-144, 1993.

M. G. Gouda and T. Herman, “Adaptive Programming,” IFFFE Trans. Soft.
FEng. 17 pp. 911-921, 1991.

M. G. Gouda and N.J. Multari, “Stabilizing Communication Protocols,” IFFF
Trans. Comp. 40 pp. 448-458, 1991.

A. S. Gopal and K. J. Perry, “Unifying Self-Stabilization And Fault-Tolerance,”
Proc. of the 12nd Annual ACM Symp. on Principles of Distributed Computing,
pp. 195-206, 1993.

S. Katz and K. J. Perry, “Self-Stabilizing Extensions for Message-Passing Sys-
tems”, Distributed Computing, 7 pp. 17-26, 1993.

L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem,” Comm. of the ACM 21,7, pp. 558-565, 1978.

L. Lamport and N. Lynch, “Distributed Computing: Models and Methods,”
in Handbook of Theoretical Computer Science, Volume B: Formal Models and
Semantics, J. van Leeuwen, Managing Fditor, Elsevier, Amsterdam, 1990.

J. Spinelli and R.G. Gallager, “Event Driven Topology Broadcast Without Se-
quence Numbers”, IEEFE Transactions on Communication, Vol. 37, No. 5, (1989)
pp. 468-474.

12 Appendix: Update Protocol Proofs

Theorem 5 The update protocol of Figure 4 self-stabilizes in O(d) rounds.

Proof: The the proof is organized as three claims.

Claim 1: Following round ¢, ¢+ > 1, the e, field of every processor satisfies

(Vp,q.j: j<i: dist(p,q)<j < (Iq,z,dist(p,q)) € €,))

The claim follows by induction on . The basis of the induction is the first round,
which trivially establishes (p, z,,0) € e, for every processor. The induction step
follows because field e, is assigned anew in each round and based on tuples that,
by the induction hypothesis, have the required property.

41

www.manaraa.com

Claim 2: Following round ¢, ¢+ > 1, the e, field of every processor satisfies
(Vp,q.j: j<i: g,y k)€ep k<) = (distip,g)=k A y=21,)))

This claim follows by same inductive argument presented for Claim 1.

Claim 3: FYollowing round d +1, (Vp:: (V(,,k)€e,: k<d))

The claim is shown by contradiction. Suppose e, contains a tuple (,,j) where
j > d. Observe that if j > d 4+ 1 then, by the construction of the initseq
function, at the end of round d + 1 the field e, also contains some tuple (g, , k)
where k = d 4+ 1. Thus to show the claim, it suffices to show a contradiction for
k = d+1. Since p assigned the tuple (¢q,,d+ 1) to e, during round d+ 1, it must
be that p found at some neighbour s the tuple (g, ,d) and found no tuple with ¢
as first component at a smaller distance. However, the tuple located at s having
distance d represents the shortest distance to ¢ by Claim 2. And since d bounds
the maximum possible shortest path, by Claim 1 all shortest paths between p
and ¢ are visible to p at the end of round d. We conclude that dist(p,q) = d+1,
which contradicts the definition of diameter d.

Claims 1-3 together imply that, following d + 1 rounds, each processor correctly has a tuple
for every other processor at distance d and that every tuple in an e-field correctly refers to
a processor O

Theorem 6 The protocol of Figure 4 is impulse monotonic:

e Let o be a legitimate state for topology 7.

o The following atomically occurs at state o: a single topology change &£ occurs to obtain
a new topology change U/ and for each processor r incident on &, the value of z, is
changed to &,.

o Let @ be a topology-constant computation of the protocol following the change £.
Then the following two claims hold:

e For any two processors p and ¢ that are connected in both 7 and U, there is a tuple
(p,,) € €4 at each state in ®; if p and ¢ are not connected in 7 but are connected in
U, then for any state 6 € ® satisfying (p,,) € e,: at every subsequent state p there is
a tuple (p,,) € e,.

e For any processors p and ¢, where p is incident on &, if there is a tuple (p,&,,) € e,
at some state 6, then at every state p following 6 in ® there is a tuple (p, &,,) € e,.

42

www.manaraa.com

Proof: The proof is based on considering an arbitrary legitimate state o in topology 7,
an arbitrary single topology change & in state ¢ resulting in topology U, followed by a
topology-constant computation ®. We consider two cases based on the type of change &:
either & increases or decreases connectivity in the network. We label a topology change
that increases connectivity as +&, since either a link or processor is added to the network;
a topology change that decreases connectivity is labelled —&.

For the case +& a technical lemma is needed: Lemma 12.2 shows for ® that distances tracked
in tuples do not increase during the computation, and that function initseq does not remove
tuples during the course of the protocol’s computation. To show impulse monotonicity, we
assign one of two colours to each tuple in an e-register. Atomically with +& we colour all
tuples white with the exception of (,,0) tuples incident on +&, which are coloured black.
Then at each cycle of a processor in @, the colour of a (,,0)-tuple is black for processors
incident on +& and white for other processors; the colour of a (,, k)-tuple, k # 0, is inherited
from the colour of the (,,(k — 1))-tuple upon which it is based. It follows that any tuple
that decreases distance during the course of ® is black; because distances do not increase
in ® and the ordering of neighbours is deterministic in the protocol, once a tuple is black
it remains black. Thus for an arbitrary processor ¢ and some p incident on +&, the tuple
(p,,) € q changes colour exactly once in computation .

For the case —&, the same colouring technique is used, with a different lemma: Lemma 12.1
shows for @ that distances tracked in tuples to not decrease during the computation and
that initseq does not remove tuples that refer to reachable processors. To show impulse
monotonicity, we assign one of two colours to each tuple in an e-register. Atomically with
—& we colour all tuples white with the exception of (,,0) tuples incident on —&, which are
coloured black. Then at each cycle of a processor in @, the colour of a (,,0)-tuple is black
for processors incident on —& and white for other processors; the colour of a (,, k)-tuple,
k # 0, is inherited from the colour of the (,, (k—1))-tuple upon which it is based. It follows
that any tuple that increases distance during the course of ® is white unless it represents a
final increase basing the tuple on a shortest path for U; because distances do not decrease
in ® and the ordering of neighbours is deterministic in the protocol, once a tuple is black
it remains black. Thus for an arbitrary processor ¢ and some p incident on —&, the tuple
(p,,) € q changes colour exactly once in computation . |

For the remaining lemmas of this subsection, o, £, 7, U, and ¢ are fixed as specified in
Theorem 6. We label a topology change that increases connectivity as +&, since either a
link or processor is added to the network; a topology change that decreases connectivity is
labelled —&. Let dist(z,y) = oo denote that no path connects z and y. To simplify analysis
we call a tuple (p,,) € e, a reachable tuple if disty(p,q) # oo.

Let p and ¢ be states of ®. The notation p < & denotes that p occurs before ¢ in the
sequence ®. The notation successor(p) = 6 means that state 6 immediately follows p in
®. The notation (p,,k) € e, ©® 6 means that tuple (p,,k) is contained in field e, at state
6. The predicate adjust(q, p,) is defined to hold if a distance change in a reachable tuple

43

www.manaraa.com

occurs:
adjust(q,p,6) = 6 = successor(p) AN (Hp,,.k)€e, O p (Hp,,m)€e,®6: m#k))

We define a based tuple recursively as follows: tuple (p,, k) € e, ® p is based if k = 0 or there
is some based tuple (p,,(k— 1)) € e, @ p for r € N,. Observe that in a legitimate state
for the update protocol, all tuples are based; following event —& some tuple(s) may not be

based.

A tuple (p,,k) € e, is low if it is reachable and k < disty(p, q). A tuple (p,,k) € e, is said
to be mazlow if it is low and satisfies:

(V(s,,m) € eq:: (s,,m) is low = disty(s,q) < disty(p,q))

Lemma 12.1 For event —&, for all processors p and ¢ satisfying disty(p,q) # oo, the
following claims hold:

(1) (Vp: pe®: (p,,)€e,0p)

(2) (p,,.l)ce, = (< disty(p,q)

(
(
(B) (p=<d A (P f)€egOp A (pym)€eg@0) = L<m
(4) (p,, k)€ e, ®p is based = disty(q,p) =k

(

(5) (p,,k) € ey is based = (Vj: 0<j<k: (3(r,,j)€e:: (r,,j) is based))

(6) adjust(q,p,6) = (V(s,,) € e; = (s,,) € ¢, ® p is maxlow = (s,,) € €, ©
6 is based)

Proof: Proof by induction on &.

Basis Let A be the state obtained from ¢ as modified by —&; A is the initial state of ® and
forms the induction’s basis. Claim (1) holds for A by the assumption that o satisfies L7.
Claims (2) and (4) hold by the assumption of o satisfying £7 and the fact that —& can only
increase minimum distances between processors. Claims (3) and (6) are claims over pairs of
distinct states and thus hold trivially in the initial state of ®. Claim (5) follows from Claim
(4), which establishes that a based tuple represents a minimum distance, and because o
satisfies L7: each based tuple also corresponds to a minimum distance in 7; therefore all
nodes that lie on a shortest path unaffected by —& between ¢ and p have based tuples.

Induction Let é = successor(p) and suppose that (1)—=(6) hold for all states v, v < p.
Consider two cases for adjust: if adjust(q,p,é) does not hold for any processor ¢, that
is, either e, is unchanged by the transition from p to ¢ or only changes to unreachable
tuples occur, then (1)—(6) hold for é by inheritance from p. The other possibility is that
adjust(q, p,6) holds for some processor ¢. In this case, the transition from p to § writes

44

www.manaraa.com

initseq(B) into e,, where B contains tuples computed by steps in ® or that are present
in state A. Tuples placed in B by steps of ® are calculated from tuples of ¢’s neighbours,
which satisfy (1)=(6) by the induction hypothesis. To show that (1)-(6) hold for state §, we
consider the claims with respect to B, and then reason about initseq(B). The remainder of
the induction considers tuples placed in B by steps of ® preceding state 6.

Claim (1) holds for B because (g, ,0) € e, holds for any iteration of the loop in Figure 4 and
by the induction hypothesis for (1), each r € N, has a tuple (p,,) € e, for any p satisfying
disty(r,p) # oo. Claim (2) holds for B since (p,,() € B for £ # 0 implies (p,,{—1) € ¢, for
some r € N, and the induction hypothesis (2) is assumed for r. Claim (2), the induction
hypothesis (4), and the definition of a based tuple show that (4) holds for based tuples
in B. Claim (5) holds by the induction hypothesis (5): based tuples in B are calculated
upon neighbouring processor based tuples, which satisfy (5) by assumption; hence all of
the neighbour’s supporting based tuples (at smaller distances) are also input to forming
tuples in B. Claims (3) and (6) are only concerned with tuples that change distance with
respect to current distances in the e, field. Claim (3) holds for tuples in B by the induction
hypothesis for (1) and (3); tuples in B are calculated from neighbouring e-fields and tuples
in these fields do not increase distance by any transition prior to state é. Similarly, Claim
(6) holds for B because any adjustment to a tuple follows from (possibly multiple) changes
in neighbouring e-fields; by hypothesis (6), each such change to an e-field adjusts all maxlow
tuples, which then by (1)-(2) and (4) remain constant thereafter.

Thus (1)—(6) have been established for B prior to the writing of initseq(B) at state 4.
It only remains to show that no reachable tuple is removed from B by the application
of initseq. This is argued by contradiction. Suppose a reachable tuple (p,,m) € B is
discarded by initseq; this implies the existence of a “gap”,i.e. for some distance {, £ < m,
no tuple (,, () € B exists. All tuples contained in B have distances equal to or larger than
tuples contained in e,, by Claim (3). It follows that such a gap is the result of increasing
the distance of some tuple(s). Yet (6) implies that the maximum-distance reachable tuple
resulting from an increase yields a based tuple; (5) then implies the existance of tuples at
all lesser distances in B, which contradicts the assumption of a gap. O

Lemma 12.2 For event +&, for all processors p and ¢ satisfying disty(p,q) # oo, the
following claims hold:

(1) (p.. k)Y€ ey = disty(p,q) <k
(2)
(3)
(4) (0, kY€ ey, = (Vrls distr(p,r)=L#00 = (Ir,,m)€e,: m<k+10))

<6 N (p,,0)ee,Op N (p,,m)€Ee,08) = (>m

<6 N (p,,)€EegOp) = (p,,)Ee, 00

(
(p
(p
(

Proof: Proof by induction on ®. To simplify cases within the proof, we distinguish two
possibilities for event +&; either a link is added to the network or a node is added with

45

www.manaraa.com

its accompanying links. In case +& adds a node to the network, let z denote the node
added. The assumption for dynamic and impulse monotonicity with respect to nodes is
that they initially have empty e-fields when added to the network. Observe from the code
of the update protocol and the assumption of a legitimate state prior to +& that no processor
changes its e-field so long as e, contains no tuples. Furthermore, after one cycle by processor
z, the e, field is assigned to satisfy:

(1) (Vp, k= disty(p,z)=k#o0c = (p,,k)€Ee.)

In addition to (1)-(4), we add (5) to the list of claims to prove invariant in the computation

b:
(5) (z,,k)€e, = (Vr b disty(z,r)=L# 00 = (Ir,,m)Ee;: m<k+1{))

Basis If +& adds no processor to the network, then let A be the state obtained from o as
modified by +&; if a processor z is added to the network, then let A be the first state in ®
that satisfies (). State A forms the induction’s basis. Claim (1) holds for A because event
+& can only decrease distances between existing nodes and all tuples present in e-fields at
state o represent distances in 7 by the assumption of a legitimate state, hence also for state
A; and (1) directly implies (1) for processor z. Claims (2) and (3) hold for A either because
there are no previous states in ® or because no e-fields are modified except for e,, which
obtains its initial value at A. Claim (4) holds trivially for A since o satisfies L7, and (5)
holds because no processor reads any tuple from e, prior to state A.

Induction Let § = successor(p) and suppose that (1)—=(5) hold for all states v, v < p.
Consider two cases for adjust: if adjust(q,p,é) does not hold for any processor ¢, that
is, either e, is unchanged by the transition from p to ¢ or only changes to unreachable
tuples occur, then (1)—(5) hold for é by inheritance from p. The other possibility is that
adjust(q, p,6) holds for some processor ¢. In this case, the transition from p to § writes
initseq(B) into e,, where B contains tuples computed by steps in ® or that are present
in state A. Tuples placed in B by steps of ® are calculated from tuples of ¢’s neighbours,
which satisfy (1)=(5) by the induction hypothesis. To show that (1)=(5) hold for state é, we
consider the claims with respect to B, and then reason about initseq(B). The remainder of
the induction considers tuples placed in B by steps of ® preceding state 6.

Claim (1) holds for B because any step of ® that places a tuple in B either places (g, ,0) in
B or calculates some (p,,(k+ 1)) based on a tuple (p,, k) € e, for some r € N,; and tuples
in e, satisfy (1) by the induction hypothesis. Similarly, (4) and (5) follow by appealing to
the induction hypothesis for the contents of some neighbouring processor’s e-field. To show
(3), consider any tuple (p,,) € e, ®p. This tuple’s presence is either inherited from o or was
calculated by some step of ® preceding 6; in either case, we infer the existence of a tuple
(p,,) € e, for r € N,. By the induction hypothesis (3), some tuple (p,,) € e, is present at
each state up to p, which implies the computation of B results in (p,,) € B @ p. For (2) it
suffices to show, for any tuple (p,, () € e, ® p, that (p,,m) € B © p satisfies m < (. Since

46

www.manaraa.com

®

&
Ot @<@
@

© O

/@ ®

@\@
o

Figure 9: Network for Counterexample.

calculation of (p,,m) is based on neighbouring e-fields, all of whose tuples satisfy (2) by
hypothesis, we conclude that (2) holds for B.

Thus (1)—(5) have been established for B prior to the writing of initseq(B) at state 6.
It only remains to show that no reachable tuple is removed from B by the application
of initseq. This is argued by contradiction. Suppose a reachable tuple (p,,m) € B is
discarded by initseq; this implies the existence of a “gap”,i.e. for some distance {, £ < m,
no tuple (,,{) € B exists. All tuples contained in B have distances smaller or equal to
tuples contained in e,, by Claim (2). It follows that such a gap is the result of decreasing
the distance of some tuple(s). This situation leads to the claim:

(6) (V(r,,jyeB: j<l AN r#z: distr(r,p)= 00)

Claim (6) follows from (4): on one hand, if distz(r,p) < (m — j) holds for any tuple
(r,,7) € B, j < {, then the tuple (p,,m) ¢ B; on the other hand, if dist7(r,p) > (m — j)
holds for every tuple (r,,7) € B, j < {, then tuples at distances m,(m — 1),... are by (4)
present in B and there is no gap at distance (. As a consequence of (6), there is some
tuple (p,,m) € B for which distr(q,p) = co. Therefore (p,,m) € B holds because some
neighbouring processor’s e-register contained tuple (p,,(m — 1)), which implies (z,,) € B.
If p = = then there exists some neighbour of z, call it s, so that distr = (¢, s) = disty(q, s),
which by (1), (3) and the assumption that o is legitimate for 7 contradicts the assumption
of a gap. If p # = then the tuple (z,,) has smaller distance than m and by (5) the existance
of a gap is contradicted. |

Theorem 7 The update protocol of Figure 4 does not satisfy dynamic monotonicity.

Proof: The proof is by counter-example. Our counter-example is stronger than needed
to disprove dynamic montonicity — the counter-example shows that even using the ac-
knowledgement mechanism given in Section 9, dynamic monotonicity is not be acheived.
Moreover, the counter-example uses only a single topology change at a legitimate state
for the update protocol followed by only one additional change to a register field. Thus
even a slight weakening of the impulse monotonicity property does not hold for the update

47

www.manaraa.com

protocol. Instead of explaining the counter-example in terms of an z, field, we use the
terminology of Section 9 and use a, and b, subfields.

The counter-example consists of the following scenario. Topology 7 is given, as
partly shown in Figure 9; the link e¢—p is not present in 7 and each node @ €
{p,q,r,s,t,u,v,w,z,y, 2} satisfies mdist (¢, c) > 50 (this larger distance is realized through
additional links and processors not shown in the figure). Processor ¢ has boolean variables
a. and b, which are broadcast via the update protocol to all other processors. The scenario
begins in a legitimate state ¢ for the update protocol, in which all processors have the
knowledge that (a. A b.) holds. We now consider a topology change +& that adds the link
c—p, accompanied atomically by the change a. := false. The subsequent computation for
the counterexample is:

1. Processors p, s, u, v, x, and z execute in sequence one cycle each. As a result,
processors have tuples for ¢ as follows:

processor P q T S { Uu v w T Y z
dist(c) 1 2 314 5 6
ac - - - - - -
be

(blank table entries indicate that the processors has values from state §.)

2. Processors z, v, u, s, p, and ¢ execute in sequence one cycle each. As a result, processor
¢ has updated distances to these nodes and also receives acknowledgement that these
processors have “seen” that —a. holds.

3. Processors r, ¢, w, and y execute in sequence one cycle each. As a result, processors
have tuples for ¢ as follows:

processor (| p |gq | T | s |t |u|v|w|lx|y]| =z
dist(c) 1 223344556
ac - - - - - - - - - -
be

4. Processors w, t, r, p, and ¢ execute in sequence one cycle each. As a result, processor
¢ has updated distances to these nodes and also receives acknowledgement that these
processors have seen that —a. holds.

5. Processors ¢ executes a cycle, with the result:

processor || p | g |7 | s |t |uw|lv|iw |z |y|=2
5

dist(c) 1212233445 6
ac - - - - - - - - - - -
be

6. Processors p and ¢ execute in sequence one cycle each. As a result, processor ¢ has an
updated distance to ¢ and now has collected acknowlegements from every processor
that —a,. holds.

48

www.manaraa.com

10.

11.

. Processor ¢ writes b, := false into its register.

not change, but the updated value of b, is propagated:

processor || p | g |7 | s |t |uw|lv|iw |z |y|=2
dist(c) 1121212131344]|5]5]|6
ac - - - - - - - - - -

bC - - - - - - - -

dating its images of a. and b., with the result:

processor || p | g |7 |s|t|lu|v|lw]|a|y]| 2
dist(c) 1122 31314145]5]|5
ac - - - - - - - - - - -
bC - - - - - - - - -

Processor y executes
the b, value from ¢:

a cycle, obtaining an

. Processors p, s, u, v, x, r, t, and w execute in sequence one cycle each. Distances do

. Processor z executes a cycle, obtaining a smaller distance to ¢ and thereby also up-

updated distance from ¢ and also copies

processor || p | g |7 | s |t |uw|lv|iw |z |y|=2
dist(c) 1121212133445]3]|5
ac - - - - - - - - - - -
bC - - - - - - - - -

Processor z executes a cycle, obtaining a smaller distance to ¢ from ¥y, copying its
images of a. and b, from y, with the result:

processor || p | g |7 |s|t|lu|v|lw]|a|y]| 2
dist(c) 1122123344534
ac - - - - - - - - - - -
bC - - - - - - - -

Thus a computation exists in which processor z obtains the sequence of b. values [true,

false, true] whereas the sequence of values at processor c is [true, false] for b.. Dynamic

monotonicity is therefore violated.

13 Appendix: Message-based Implementation

a

Sections 2—5 propose a shared-register model with atomic execution of interrupt statements.

The results are, however, intended for an asynchronous message-passing model. This sec-
tion sketches the constructions needed to implement the shared-registermodel in terms of a

reasonable message-passing system. Figure 10 presents a schematic view of a layered con-
struction for the shared-register model. FEach layer is a self-stabilizing protocol to deliver

services to the next higher layer. The overall construction is a fair composition of the layers.

49

www.manaraa.com

At the lowest layer we have a system of asynchronously executing, uniquely named
processors that communicate by sending and receiving messages via local, numbered ports.

At the second layer, a processor knows which of the ports are active and the names
of processors at the opposite ends of channels attached to the active ports. Since the
status of ports and channels are dynamic, time-outs and probabilistic methods are used
to implement a protocol that simulates the second layer. Also at this layer, a processor is
able to distinguish between a link recovery and a processor recovery associated with a port
becoming active.

The third layer is a modification of the alternating bit protocol for bounded channel
suggested by [GM91, AB93, DIM91]. These self-stabilizing protocols also use time-out. We
omit the requirement for the master-slave setup for the two ends of a link by the following
technique: A message m received by a processor p from a processor ¢ has two fields my
and my. p process both fields and sends a message m’ with two fields m} and m), to q.
Processor p processes my as the receiver in the bounded protocol of [AB93] to produce m}.
p process my as the sender of the bounded protocol of [AB93] to produce m/. Similarly, ¢
act as the receiver for m/{ and as the sender for m} and alternate the order of its responds.
Thus, we view the link as two undirected links in one p is the sender and ¢ is the receiver
and in the other ¢ is the sender and p is the receiver. Eventually, in each virtual link there
exist exactly one token that circulates from p to ¢ and backwards.

The fourth layer implements link registers using the alternating bit protocol provided
by the third layer. The implementation idea was first introduced in [DIM91] and [D092] for
the case of implementing link registers by message passing. Below we sketch how essentially
the same idea can be used for implementing a shared register as specified in Section 2. The
fifth and sixth layers are discussed in earlier sections of this paper.

The heart of the implementation of the fourth layer is the simulation of virtual read and
virtual write operations. Every processor has a local variable virtual-register that represents
its register. A write operation is implemented by writing to the virtual-register. Every time
a processor p receives a token at the virtual link in which p plays the receiver, p augments
the token with the current value of its virtual-register. A read operation from a neighbour
¢ is implemented by receiving a token from ¢ in the virtual link in which p is the sender.
Then receiving the second token from this virtual link and using the value augmented to
it, constitutes the result of the read operation. Note that during the virtual read operation
p continues to handle all the tokens arriving through every virtual link by augmenting the
tokens with the value of its virtual-register.

To show that the implementation is correct one needs to show that the order of op-
erations of every processor is preserved and the result of any virtual read from a register
is a value that has been in that register during the virtual read operation. We map each
virtual operation with real-time. The virtual write operation take place at the time the
virtual-register is updated. The virtual read operation take place at the time the second
token is initiated at the neighbour. Obviously, there is an execution in the shared register
model that would have the write operation at the real-time of the virtual write operations

50

www.manaraa.com

(HIGHEST LAYER)

STABILIZING PROTOCOL

UPDATE PROTOCOL

SHARED REGISTERS

LINK REGISTERS

LINK TOKEN, ABP PROTOCOL

NEIGHBOUR NAMES, RECOVERY TYPE + time-outs
+ probability

FIFO—CHANNELS, PORTS, UNIQUE PROCESSOR IDENTIFIERS

(LOWEST LAYER)
Figure 10: Schematic of Layered Register Construction.

and read operations at the real-time of the virtual read operations. This shared register
execution is equivalent to that required by the model.

51

www.manharaa.com

