
www.manaraa.com

SuperStabilizing Protocols for Dynamic Distributed Systems(Preliminary Version)Shlomi Dolev�Texas A&M Universityshlomi@cs.tamu.edu Ted HermanyUniversity of Iowaherman@cs.uiowa.eduJanuary 1995AbstractTwo aspects of reliability of distributed protocols are a protocol's ability to recoverfrom transient faults and a protocol's ability to function in a dynamic environment.Approaches for both of these aspects have been separately developed, but have draw-backs when applied to an environment that has both transient faults and dynamicchanges. This paper introduces de�nitions and methods for addressing both concernsin the design of systems.A protocol is superstabilizing if it is (i) self-stabilizing, meaning that it is guaranteedto respond to an arbitrary transient fault by eventually satisfying and maintaining alegitimacy predicate, and (ii) it is guaranteed to satisfy a passage predicate at all timeswhen the system undergoes topology changes starting from a legitimate state. Thepassage predicate is typically a safety property that should hold while the protocolmakes progress towards re-establishing legitimacy following a topology change.Speci�c contributions of the paper include: superstabilizing protocols for coloringand spanning tree construction; metrics for evaluating superstabilization; a generalmethod for converting self-stabilizing protocols into superstabilizing ones; and a gener-alized form of a self-stabilizing topology update protocol which may have useful appli-cations for other research.�Part of this research was supported by TAMU Engineering Excellence funds and by NSF PresidentialYoung Investigator Award CCR-9396098.yThis research was supported in part by the Netherlands Organization for Scienti�c Research (NWO) un-der contract NF 62-376 (NFI project ALADDIN: Algorithmic Aspects of Parallel and Distributed Systems).

www.manaraa.com

1 IntroductionThe most general technique to enable a system to tolerate arbitrary transient faults isself-stabilization: a protocol is self-stabilizing if, in response to any transient fault, it con-verges to a legitimate state in �nite time. The characterization of legitimate states, givenby a legitimacy predicate, speci�es the protocol's function. Such protocols are generallyevaluated by studying the e�ciency of convergence, which entails bounding the time ofconvergence to a legitimate state following a transient fault. Other aspects of convergence,for instance safety properties, are of less interest since arbitrary transient faults can falsifyany non-trivial safety property.The model of a dynamic system, is one where communication links and processors mayfail and recover during normal operation. Protocols for dynamic systems are designed tocope with such failures and recovery without global reinitialization. These protocols con-sider only global states that are reachable from a prede�ned initial state under a restrictivesequence of failures; under such an assumption, the protocols attempt to cope with failureswith as few adjustments as possible. Thus, whereas self-stabilization research largely ig-nores the behaviour of protocols between the time of a transient fault and restoration to alegitimate state, dynamic protocols make guarantees about behaviour at all times (e.g. theperiod between a failure event and the completion of necessary adjustments).1.1 SuperstabilizationSuperstabilizing protocols combine bene�ts of both self-stabilizing and dynamic protocols.We retain the idea of a legitimate state, but partitition illegitimate states into two classes,depending on whether or not they satisfy a passage predicate. Roughly speaking, a protocolis superstabilizing if it is (i) self-stabilizing, and (ii) when started in a legitimate state and atopology change occurs, the passage predicate holds and continues to hold until the protocolreaches a legitimate state.The passage predicate is de�ned with respect to a class of topology changes. Sincea legitimacy predicate is dependent on system topology, a topology change will typicallyfalsify legitimacy. The passage predicate must therefore be weaker than legitimacy, butstrong enough to be useful; ideally, the passage predicate should be the strongest predicatethat holds when a legitimate state undergoes a topology change event. One example for apassage predicate is the existence of at most one token in a mutual exclusion task; whereasin a legitimate state exactly one token exists, a processor crash could lose the token but notfalsify the passage predicate. Similarly, for the leader election task, the passage predicatecould specify that at most one leader exists.Superstabilizing protocols are evaluated in several ways. Of interest are the worst-caseconvergence time, i.e., the time required to estabilish a legitimate state following either atransient fault or a topology change, and the scope of the convergence in terms of how much1

www.manaraa.com

of the network's data must be changed as a result of convergence. We classify superstabili-zing protocols by the following complexity measures:Stabilization time is the maximum amount of time1 it takes for the protocol to reach alegitimate state.Superstabilization time is the maximum amount of time it takes for a protocol starting froma legitimate state, followed by a single topology change, to reach a legitimate state.Adjustment measure is the maximum number of processors that must change their localstates, upon a topology change from a legitimate state, so that the protocol is in a legitimatestate.1.2 Background and MotivationMany distributed protocols have been designed to cope with continuous dynamic changes(e.g. [AAG87, AGH90, AM92, AGR92]). These protocols make certain assumptions aboutthe behavior of processors and links during failure and recovery; for instance, most of thoseworks do not consider the possibility of processor crashes2 and they assume that everycorrupted message is identi�ed and discarded. If failures are frequent, these restrictiveassumptions can be too optimistic. In particular, when the protocol is an on-going protocolthat does not stop running (e.g., distributed operating system, topology update, token-passing), even a single violation of the assumptions on the behavior of processors and linkscan cause the system to permanently be in an inconsistent state.A number of researchers [DIM93, KP93, APV91] suggest a self-stabilizing approach todeal with dynamic systems. In these approaches, a state following a topology change isseen as an inconsistent state from which the system will converge to a state consistentwith the new topology. Although self-stabilization can deal with dynamic systems, theprimary goal of self-stabilizing protocols is to recover from transient faults, and this viewhas in
uenced the design and analysis of self-stabilizing protocols. For instance, for a correctself-stabilizing protocol, there are no restrictions on the behavior of the system during theconvergence period | only convergence to a legitimate state is guaranteed.Self-stabilization's treatment of a dynamic system di�ers from that of the dynamicprotocols cited above in the way that topology changes are modelled. The dynamic protocolsassume that topology changes are events signaling changes on incident processors. Self-stabilizing protocols take a necessarily more conservative approach that is entirely state-based: a topology change results in a new state from which convergence to a legitimacy isguaranteed, with no dependence on a signal.3 If a topology change can occur without any1Measured by asynchronous time units called rounds, which are de�ned in the sequel.2For example they do not tolerate the loss of the alternating bit value used by the alternating bit protocol[BSW69], nor the loss of the message that is been currently sent, see [DW93].3Any such signal would be recorded in the state, but a (transient) faulty topology change could occurwith no evidence of a signal. 2

www.manaraa.com

&%'$����d b e i gcq���������:qXXXXXXz XXXXy q ��������9 qFigure 1: State Space and Convergence.guarantee of a signal, it makes no sense to guarantee behavior of the protocol during theperiod following a topology change. Yet when the system is in a legitimate state and a faultis a detected event, can the behavior during the convergence be constrained to satisfy somedesired safety property? For instance, is it possible in these situations for the protocol tomaintain a \nearly legitimate" state during convergence?In addition to constraining a protocol's behaviour following a topology change to satisfya safety property, we can also require that the adjustments processors make to convergeare minimal. Consider the diagram shown in Figure 1. In this diagram, circles representclosed sets of legitimate states. Arrows represent convergence from an illegitimate state toa legitimate state. The length of an arrow is proportional to the scope of adjustment (e.g.,number of processors that change state) due to convergence. The diagram illustrates thecase of a self-stabilizing protocol that, upon detecting an illegitimate state, resets the globalstate to restore legitimacy. Notice, however, that one of the illegitimate states is near to alegitimate one, as highlighted by the dashed box. Instead of using a standard global reset,it would be better to adjust processor states so that convergence to a nearby legitimatestate occurs.The issue can also be motivated by considering the problem of maintaining a spanningtree in a network. Suppose the spanning tree is used for virtual circuits between processorsin the network. When a tree link fails, the spanning tree becomes disconnected; yet virtualcircuits entirely within a connected component can continue to operate. We would like torestore the system to have a spanning tree so that existing virtual circuits in the connectedcomponents remain operating; thus a least-impact legitimate state would be realized bysimply choosing a link to connect the components.The time complexity of a self-stabilizing protocol is the worst-case measure of the timespent reaching a legitimate state from an arbitrary initial state. But is this measure ap-propriate for the view of self-stabilization for dynamic systems? Perhaps a better measurewould be the worst-case of starting from an arbitrary legitimate state, considering a singletopology change, and then measuring the time needed to again reach a legitimate state.This approach can be motivated by considering the probability of certain types of faults:while a transient fault is rare (but harmful), a dynamic change in the topology may be afrequent event. Note that the concern of time complexity is orthogonal to the concern ofwhether a protocol converges with minimal adjustments to its processor states following a3

www.manaraa.com

topology change.1.3 Results and Comparison with Previous WorkOne thesis of this paper is that self-stabilizing protocols can be designed with dynamicchange in mind to improve response. Self-stabilizing protocols proposed for dynamic systems[DIM93, KP93, APV91] do not use the fact that processor can detect that it is recoveringfollowing a crash (note that in [APV91] only link failures are considered); consequentlythere is no possibility of executing an \initialization" procedure during this recovery.Recent work has shown how the basic model for self-stabilizing protocols, that considertransient-faults, can be extended to handle permanent-faults [AG92, GP93, DW93]. Suchfaulty behaviors as link crashes can be represented in the model by certain input variables;for instance, the neighborhood of a processor by an input variable containing a set ofneighboring processor identi�ers. A key observation for this paper is that a topology changeis usually a detectable event; and in cases where a topology change is not detected, we useself-stabilization as a fall-back mechanism to deal with the change. In order to capture thepossibility of reacting to a change we extend the de�nitions of [AG92, GP93] to includeinterrupts associated with such changes.We use the fact that most dynamic changes are not entirely arbitrary, but are con-strained, with fewer possibilities for change than in the general case of a transient fault. Inparticular we show superstabilizing protocols are able to respond to dynamic changes withfew adjustments, in some cases only at a single processor. This situation corresponds to theintuitive notion that a distributed system should distributively adjust to topology change:if possible a change in one place of the system should not e�ect the output of the entiresystem.Superstabilizing protocols can be directly constructed: we present examples in Sec-tions 6 and 7. The general question of converting a self-stabilizing protocol to one that issuperstabilizing is addressed by a method described in Section 9, which begins with a self-stabilizing protocol, then builds upon that protocol by adding new components that detecta dynamic change and then bring the system to a legitimate state with few adjustments. Incase the dynamic change is too drastic (e.g. many simultaneous topology changes) it maybe that our new components cannot cope with the change, in which case the underlyingself-stabilizing protocol guarantees eventual convergence to some legitimate state.The remainder of the paper illustrates, with protocols, how the handling of dynamicchanges can be incorporated into protocol design. Following the introduction, we presentin Sections 6 and 7 motivating examples. Section 2 formalizes the treatment of dynamicchange. Section 9 describes a general method for converting a given self-stabilizing protocolinto one that is optimized for dynamic change; this can be seen as a \dynamic optimizer"for self-stabilization. Finally, Section 11 contains concluding remarks.4

www.manaraa.com

2 Dynamic SystemThis section introduces notation and de�nitions of computation, dynamic change, stabiliza-tion and complexity measures. The general setting is a system in a dynamic environment.The state of the system has two components: one component consists of all the variables,program counters and communication data that can be altered by execution of system ac-tions; the other component consists of input variables that represent the con�guration ofthe system: these input variables cannot be changed by the system, but may be changedby the dynamic environment at any instant.A system is represented by a graph where processors are nodes and links are (undi-rected) edges. An edge between two processors exists i� the two processors are neighbours;processors may only communicate if they are neighbours. Each processor has a uniqueidenti�er taken from a totally ordered domain. We use p, q, and r to denote processoridenti�ers. Processors communicate using registers, however application of the model to amessage-passing system is intended; Section 13 sketches an implementation of the registermodel in terms of message-based constructions.Associated with each processor are code, internal variables, program counters, and ashared register. A processor can write to its own shared register, but may only read sharedregisters belonging to neighbouring processors. The code of a processor is a sequentialprogram; a program counter is associated with each processor. To simplify presentation, wemake the convention that advancing the program counter beyond the last statement of aprogram returns the program counter to the program's �rst statement; thus each programtakes the form of an in�nite loop. An atomic step of a processor (in the sequel referredto as steps) consists of the execution of one statement in a program. In one atomic step,a processor performs some internal computation and at most one register operation. Aprocessor has two possible register operations, read and write. For many of the protocolspresented in this paper, each processor is equipped with an interrupt statement, which isa statement concerned with adjusting to topology change. For each processor p there isan input variable Np, which is a list of processors q that are neighbours of p. Invariantly,neighbourhoods satisfy p 62 Np and q 2 Np , p 2 Nq.Local variables of processors are of two types: variables used for computations and �eldimage variables. The former are denoted using unsubscripted variable names such as x, y,and A. The �eld image variables refer to �elds of registers; these variables are subscriptedto refer to the register location, for instance ep refers to a �eld of processor p's register andyq refers to a �eld of processor q's register. Program statements that assign to �eld imagesor use �eld images in calculations are not register operations: the �eld image is essentiallya cache of an actual register �eld. A processor p's read(q) operation, de�ned for q 2 Np,atomically reads the register of processor q and assigns all corresponding �eld images (e.g.eq, yq , etc.) at processor p. A write operation atomically sets all �elds of p's register tocurrent image values. For convenience, we also permit a local calculation to specify �eldimage(s) with a write operation, for instance write(ep := 1) sets �eld image ep and writes to5

www.manaraa.com

p's register.The state of a processor p fully describes its internal state, its neighbourhood Np, andthe value contained in its register; in the sequel we occasionally refer to the state of aprocessor as a local state. The state of the system is a vector of states of all processors; asystem state is called a global state. For a global state � and a processor q, let �[q] denotethe local state of q in state �. A computation is a sequence of global states � = (�1; �2; � � �)such that for i = 1; 2; � � � the global state �i+1 is reached from �i by a single step of someprocessor. A fair computation is a computation that is either �nite or in�nite and containsin�nitely many steps of each (non-crashed) processor.A system topology is a speci�c system con�guration of links and processors. Each pro-cessor can determine the current status of its neighbourhood from its local state (via Np),so the system topology can be extracted from a global state of the system. Let T :� denotethe topology for a given global state �. Dynamic changes transform the system from onetopology T :� to another topology T :� by changing neighbourhoods and possibly removingor adding processors.A topology change event is the removal or addition of a single link or processor, togetherwith the execution of certain atomic steps speci�ed in the sequel. Topology changes involv-ing numerous links and processors can be modelled by a sequence of single change events.The crash of processor p is denoted crashp; the recovery of processor p is denoted recovp;crashpq and recovpq denote link failure and recovery events. In our model, a processor crashand a link crash are indistinguishable to a neighbour of the event: if p and q are neighboursand crashp occurs, then we model this event by crashpq with respect to reasoning aboutprocessor q. We say that a topology change event E is incident on p if E is recovp, crashpq,or recovpq. We extend this de�nition to be symmetric: E is incident on p i� p is incident onE . Note that recovery of a processor together with links to its adjacent processors is treatedas multiple events in our model: recovp is one event, and each recovpq for neighbouring qis a separate event; we further suppose that recovp occurs prior to recovpq in any processor(and neighbouring link) recovery sequence.A topology change E incident on p causes the following to atomically occur at p: theinput variable Np is changed to re
ect E , the interrupt statement of the protocol is atomi-cally executed, and p's program counter is set to the �rst statement of the program. Notethat if E is incident on numerous processors, then all incident neighbourhoods change tore
ect E and all processors execute the �rst interrupt step atomically with event E . Thusthe transition by E from T :� to T :� changes more than neighbourhoods; states � and � alsodi�er in the local states of processors incident on E due to execution of interrupt steps atthese processors.A trajectory is a sequence of global states in which each segment is either a fair com-putation or a sequence of topology change events. For purposes of reasoning about self-stabilization, we follow the standard method of proving properties of computations, nottrajectories. Dynamic change is handled indirectly in this approach: following an event E ,6

www.manaraa.com

if there are no further changes for a su�ciently long period, the protocol self-stabilizes inthe computation following E in the trajectory.3 StabilizationResearchers in the area of self-stabilization have proposed two sorts of de�nitions for the ba-sic concept of legitimacy. The approach of [Dij74] de�nes legitimacy in terms of a predicateover the system state; the other approach [LL90] de�nes legitimacy in terms of behaviour.The paper [BGM93] shows that the behaviour approach, which de�nes legitimacy as a suf-�x property of computations, does not always have an equivalent expression in terms ofpredicates over system states. Although the behaviour approach may be more general,most stabilizing algorithms rely on some predicate over states (or snapshots of states) toinitiate or control stabilization. We follow the approach of de�ning legitimacy in terms ofa predicate on states. The remainder of this section de�nes legitimacy in our model andpoints out some advantages and disadvantages of our de�nition.Each global state of a system can be classi�ed as either legitimate or illegitimate: thepredicate L holds i� the system is in a legitimate state. The notation � ` L denotes that Lholds at state �. A protocol is self-stabilizing i� for any fair computation starting from aninitial state �, � ` L, every state � in that computation satis�es � ` L; and for every faircomputation starting from any initial state � such that � ` :L, a state � satisfying � ` Lis reached after a �nite number of atomic steps.Our model of processors and registers di�ers from the simpler state-reading model orig-inally employed [Dij74] to de�ne self-stabilization. In the state-reading model, there is nonotion of a program counter; the protocol is a set of rules and in one atomic step a proces-sor can read its own variables, the variables of its neighbours and write new values into itsvariables. Consequently, it is convenient in the state-reading model to describe predicate Las a relation over processor variables. In our model, such a predicate is more complicatedsince processor states consist of registers, local variables, and program counters; it is notso convenient to specify L completely as a relation over state-variables. Yet in nearly allcases, the essence of a legitimate state is captured by a predicate P over a limited subsetof state-variables. For instance, P may hold if certain register �elds form a tree in thenetwork, or if at most one token exists in the system. The problem is that P may not itselfbe stable. It may be that a system state satis�es P , but some local variables and programcounters in that state are such that following one atomic step, registers are overwritten withthe result that P is false. What is needed for a de�nition of L is a predicate that speci�esthe \reasonable" con�gurations of program counters, local variables and registers. Insteadof explicitly de�ning L to cover all the details of program counters and local variables, weuse the following technique. For any fair computation � and global state �, � 2 �, letsuccessor(�) be the state following � in �. Suppose P is the property of interest, e.g. Pcan be a predicate that holds if certain register �elds form a tree. Then L is de�ned to be7

www.manaraa.com

the weakest solution in unknown predicate X of the equation(8�; � : � 2 � : (� ` X) � ` P) ^ (� ` X) successor(�) ` X))For protocols in this paper, we use this technique to de�ne L implicitly, in terms of somedesired property P , thereby not bothering to specify details over program counters andlocal variables. In order to prove that a protocol is self-stabilizing, we typically reason thata processor's local variables have sensible values after a single cycle in which neighbouringregisters are read and the processor's own register is written using the local variables |since registers are written by only one processor, the local variables continue to accuratelyre
ect the register contents after the �rst cycle. The characterization of program countersand local variables remains implicit in such a proof and spares the reader of details.4 SuperstabilizationOne motivation for superstabilization is that a system should react gracefully to a topologychange | preserving a passage predicate in the presence of the topology change. Thede�nition of superstabilization takes the idea of a \typical" change into account by specifyinga class � of topology change events. A self-stabilizing procotol is superstabilizing withrespect to events of type �, if starting from a legitimate state followed by a �-event, thepassage predicate holds continuously until the protocol converges to a legitimate state.De�nition 4.1 A protocol P is superstabilizing with respect to � i� P is self-stabilizingand for every trajectory � beginning at a legitimate state and containing a single topologychange events of type �, the passage predicate holds for every � 2 �.De�nition 4.2 A protocol P is continuously superstabilizing with respect to � i� P is self-stabilizing and for every trajectory � beginning at a legitimate state and containing onlychange events of type �, the passage predicate holds for every � 2 �.De�nition 4.2 is called continuous superstabilization because the environment is allowedto change the topology continuously, whereas De�nition 4.1 addresses the case of a singletopology change. The de�nition of continuous superstabilization is motivated by the ap-proach of dynamic protocols, which are designed to handle asynchronous topology changesas they occur during system execution. This approach is necessary for dynamic protocols,since they have no secondary mechanism for recovery from errors. De�nition 4.1 is moti-vated by the approach of self-stabilizing protocols, which can recover from topology changeprovided the environment is stable for a \long enough" period following the change. Al-though De�nition 4.1 considers trajectories with a single change, we emphasize that theintention is to handle trajectories with multiple changes (each change is completely acco-modated before the next change occurs). Our de�nition could be modi�ed to state thisexplicitly, however we have chosen this simpler form in order to streamline proofs.8

www.manaraa.com

A particular passage predicate is of special interest | we use it in our general methodfor converting self-stabilizing protocols to superstabilizing protocols. To motivate this pred-icate, suppose the system is in a legitimate state and a �-topology change occurs. As aresult, the system can be in an illegitimate state in such a way that a processor not incidenton the topology change, i.e. at some distance from the change event, must eventually changeits local state in order for the system to again reach legitimacy. However at the instantof a topology change, processors not incident on that topology change appear locally tohave legitimate states. To formalize the notion of local legitimacy we propose a number ofde�nitions.Let D be a set of processors. With respect to any state � such that D is some subsetof the processors of T :�, de�ne T :�[D] to be the subgraph of T :� induced by D. Let �[D]denote a vector of local states corresponding to the processors in D.De�nition 4.3 The vector of local states �[D] is locally legitimate i� there exists a state� such that T :�[D] is a subgraph of T :�, �[D] is a subvector of �, and � ` L.Because adjustment to a topology change may require changing state information at somedistance from the topology change, some type of coordination is necessary to e�ect the ad-justment. During execution of the adjustment coordination, further topology changes couldoccur (or even transient errors). We are therefore interested in self-stabilizing coordinationprocedures, that is, procedures that are guaranteed to terminate coordination activity fromany initial state. The following de�nition is a building-block for the synchronization of co-ordination following a topology change. It introduces the notion of a �lter predicate, whichis a locally evaluated predicate that intuitively represents activity of coordination followinga topology change. The de�nition requires that �lter predicates stabilize to false in anycomputation, meaning that all coordination activity eventually halts.De�nition 4.4 A predicate Ip is a �lter predicate for protocol P i� Ip is a function mappinga local state of p to a boolean so that every fair computation has a su�x in which (8p :: :Ip)holds at every state in that su�x.The following de�nition speci�es a particular form of passage predicate, one that insureslocal legitimacy during convergence. In the de�nition, the trajectory is left anonymous,since the de�nition could apply to either continuous or non-continuous superstabilization.De�nition 4.5 Passage predicate Q is �lter-based i� there exists a �lter predicate I suchthat for every state � the following holds: � ` Q i� for every set of processors D: if � ` :Ipholds for all p 2 D, then �[D] is locally legitimate.In words, for a �lter-based passage predicate, any subgraph of the network in which �lterpredicates are false is locally legitimate. The usefulness of such a passage predicate depends9

www.manaraa.com

on a method to control the state of the �lters by means of interrupts. The followingremarks outline the use of our conventions for interrupts, �lter predicates, and programs toachieve superstabilization. A change event E initiates an interrupt for all incident processors;atomically, the interrupt step of each incident processor sets some
ag in a �eld variableand writes to its register so as to set I to true at that processor. Thus Ip is not onlya function of the local state, but can be inspected by any neighbour. It remains only toguarantee that when a processor q reads a register indicating Ip = true for a neighbour p,then q immediately sets Iq to true. In this way, the condition on set D in the de�nitionof superstabilization can be met. In essence, as the \news" of a topology change spreadsin the network, processors are frozen before they can process this news and remain frozenuntil their states are adjusted to be made legitimate.An advantage of a �lter-based passage predicate is that Ip can be used locally to de-termine that a processor p is in a \vulnerable" state, that its local variables and registersare unreliable for the current topology. So long as Ip holds, a processor running a protocolP is potentially an unreliable provider of service. Our intent is that a client of P shouldtake Ip into account when using P and wait until Ip is false, before relying again on P .Clients of P that take Ip into account enjoy a higher quality of service. The change fromone topology to another is e�ectively atomic for such clients: the client switches from onelegitimate state to another legitimate state without processing during an illegitimate state.5 Complexity of SuperstabilizationA primary contribution of superstabilization is the notion of a \low{impact" reaction by aprotocol to dynamic change. Intuitively, this means that changes necessary in response todynamic change should a�ect relatively few processors and links. To formalize this notion,we introduce an adjustment measure. To de�ne an adjustment, we return to the notion oflegitimacy and a property P that e�ectively characterizes the legitimacy predicate L. Letvar(P) be the minimal collection of variables and �elds upon which P depends. Call O thestate-space ranging only over the var(P) data. The expression �[O] denotes a system stateprojected onto the O state-space. Now we consider a function F : O �! O. Function Fmaps states �[O] to states �[O] satisfying � ` L, where � and � are any states such that� can be obtained from � by a �-topology change E . The idea is that F represents thestrategy of a superstabilizing protocol in reacting to an event E , choosing a new legitimatestate following dynamic change. We rank a function F by means of an adjustment measureR. The adjustment measure R is the maximum number of processors having di�erent O-states between �[O] and F(�[O]), taken over all states � derived from some state � ` Lfollowed by some change event E 2 �. A de�nition of F with a small adjustment measureR implies that few adjustments are necessary in response to a topology change.To describe the time complexity of a protocol, the notion of a cycle is introduced. Acycle for a processor p is a minimal sequence of steps in a computation so that a completeiteration of the protocol at processor p completes, from �rst to last statement of the program10

www.manaraa.com

for p. All the programs of this paper are constructed so that a processor p's cycle consists ofreading all of p's neighbour registers, some local computation, and writing into p's register.The time-complexity of a computation is measured by rounds, de�ned inductively as follows.Given a computation �, the �rst round of � is �nished at the �rst state at which everyprocessor has completed at least one cycle; round i+ 1 terminates after each processor hasexecuted one cycle following the termination of round i.The order of magnitude of rounds, in terms of number of processors or network diameter,is the chief measure of time complexity. This permits us some freedom in the analysis of aprotocol's cycles. For instance, we can generalize the de�nition of cycle to consist of someconstant number of iterations of a processor's program. Typically, to analyse the roundcomplexity of some protocol P , we consider a cycle to be a minimal sequence of steps sothat the �rst through the last statement of program are executed in order. This means, forinstance, that if P has a program with 30 statements, and execution begins at statement15 (certainly possible in an arbitrary initial state), the �rst cycle would consist of executionof statements 15{30 followed by execution of statements 1{30, since this is the minimalsequence that guarantees that the �rst through last statement are executed in order (asopposed to 15{30 followed by 1{14).The stabilization time of a protocol is the maximum number of rounds it takes for thesystem to reach a legitimate state starting from an arbitrary state. The superstabilizationtime is the maximum number of rounds it takes for a system starting from an arbitrarylegitimate state �, followed by an arbitrary �-change event E , to again reach a legimatestate.6 Superstabilizing ColouringThis section exercises the de�nitions and notation developed in Section 2{5 for a simple allo-cation problem. A set of resources is to be allocated to processors so that no two neighboursshare the same resource. The problem is challenging to the extent that the set of resourcesis limited. Our goal in this section is, however, not to investigate the most challenginginstance of the general problem, but rather to illustrate aspects of superstabilization.Let � be a parameter, intended as a bound the maximum number of neighbours forresource allocation. Let C be a totally ordered set of colours satisfying jCj � 1 + �. Eachprocessor p has a register �eld colourp. The problem is to allocate colours to processorsso that neighbouring processors have di�ering colours. We assume henceforth that eachprocessor has at most � neighbours in any trajectory, which makes colour selection a simplematter. The property of interest P for legitimacy is� ` P = � ` (8 p; q : q 2 Np : colourp 6= colour q) ^ colour p 2 C ^ colour q 2 CA legitimate state for the colouring protocol is any state such that (i) property P is satis�ed,and (ii) for each computation that starts in such a state, no processor changes colour in thecomputation. 11

www.manaraa.com

The passage predicate Q for superstabilization is similar to P , except that processorswith colour =? are not considered in con
icts:� ` Q = � ` (8 p; q : q 2 Np : colourp 6= colour q _ colour p =? _ colourq =?)The domain of a colour variable is thus extended to C[f?g to de�ne the passage predicate.Figure 2 presents a protocol for the allocation problem. Each processor has a localvariables A and B used to collect the colours of its neighbours. A value ?, satisfying?62 C is introduced for the purposes of superstabilization. The function choose selects theminimum colour from the set S (and is unde�ned if S is empty).The protocol of Figure 2 has two parts: one part is a self-stabilizing protocol, modi�edto deal with the ? element; the other part lists the interrupt that deals with topologychange events. The self-stabilizing section perpetually scans for a colour con
ict with theset of neighbouring processors having a larger identi�er.4 The interrupt statement writesto the register, conditionally changing the colourp �eld in case the topology change eventwas a restart of the processor or a link.Lemma 6.1 Following one cycle of the colouring protocol at a processor p: colourp 2 Cholds.Proof: The lemma follows because the cycle of the self-stabilizing section includes stepsS1{S7 in order, implying jAj � � and jBj � �, from which we conclude that chooseinvocations in S8 and S9 deliver some colour from set C.Lemma 6.2 The colouring protocol is self-stabilizing and converges in O(n) rounds.Proof: Let � be an arbitrary computation of the protocol beginning at state � and let n bethe number of processors in T :�. Lemmas 6.1 imply that after one round, no colour variablehas or will obtain the value ? in the computation. We now show, by induction on the numberof processors, that following round 2 + i, 0 � i � n, the i largest-identi�er processors havepermanent colour assignments such that no con
ict with a neighbour of higher identityexists among these i processors. The basis for the induction is trivial since the empty setof processors satis�es the assertion. Now suppose the claim holds following round 2 + k,0 � k < n. We examine the e�ect of round 3+k with the respect to processor r, where r isthe kth largest processor identi�er. In this round, processor r chooses some colour di�ering4It is interesting to note that the more powerful state-reading model has a particularly simple protocolfor colouring when the so-called central demon is assumed:([] q : q 2 Np : colourp = colourq ! colourp := choose(C n fcolourrjr 2 Nrg))is the rule for a process p; after at most n state transitions, where n is the number of processes, the protocolhas stabilized. The notation ([]q : q 2 Np : X) is shorthand for specifying a copy of the rule X for eachneighbour of p. This protocol fails under the distributed demon, i.e. when rules may simultaneously �re.12

www.manaraa.com

from any colour of a processor with a larger identity. The choice is deterministic, based onthe colours of the larger identities. By hypothesis, these larger identity colour assignmentsare permanent, so following round 3+ k and for all subsequent rounds, processor r's colouris �xed and di�ers from the colours of all neighbours of larger identity. The induction iscompleted. Thus after 2 + n rounds, all processors have permanent colour assignments. Itonly remains to remark that no colour-con
ict exists after 2 + n rounds, since any suchcon
ict would imply con
ict between at least two processors, one having a larger identi�erthan the other.Lemma 6.3 The O(n) bound of Lemma 6.2 is tight.Proof: Consider a topology consisting of a chain of n processors, named 1; 2; . . . ; n, withprocessors 1 and n being endpoints of the chain. Let � = 2 and let C consist of threecolours, green < red < blue . In the initial state, all processors have colour red. For thecomputation, we choose a scenario in which processors compute synchronously. In the �rstround, processor n chooses green because it is the minimum colour and all other processorsalso choose green because it is the minimum colour di�erent from red. After the �rst round,colourn = green is stable for the remainder of the computation. In the second round, allprocessors other than n choose red since it is the smallest colour di�erent from green. Afterthe second round, colourn�1 = red is stable for the remainder of the computation. Theargument can be repeated to show that n rounds are required to reach a legitimate state.We conjecture that any self-stabilizing colouring protocol for dynamic systems withparameter �, where the number of processors may exceed �, has a worst-case convergenceof at least O(n) rounds (the network diameter is O(n) in the worst case).Lemma 6.4 The colouring protocol is superstabilizing with a superstabilizing time ofO(1) and adjustment measure R = 1 for � being the class single topology change events.Proof: Self-stabilization is proved in Lemma 6.2. Let � be a trajectory beginning at somestate �, � ` L, with � being the second state of � obtained from � by a topology changeevent E (together with execution of the �rst interrupt step of all processors incident onE), let 	 be the su�x of � beginning with state �, and let 	 be a fair computation. Theremainder of the proof consists of showing that the system reaches a new legitimate statewithout violating the passage predicate.Every processor p with colourp 6=? in � has an identical colour in �. By the fact that �is legitimate no two neighboring processors with colour 6=? have identical colours. Next weshow that only processors with colour =? in � change colours in �. For the cases crashpq,or crashp there is no processor with colour =? in �, so S8 is not executed. Moreover, theB set of colours in � is a superset of B in any subsequent con�guration in �. Thus, in anyexecution of S9 it holds that colourp 62 B. Therefore, no processor change a color in �.13

www.manaraa.com

For the case of recoverp no con
ict of colours may arise since there is no link connect-ing p to the rest of the system. The only left topology change is recoverpq for which acolour non
ict is eliminated by setting one colour to ?. Then the single processor, p, withcolourp =? in � reads the neighbouring colours (in line S4) and assigns a colour that is notone of the neighbouring colours in line S8. Thus, no other processor change colour in �.Both the O(1) superstabilization time and the adjustment measure R = 1 are implieddirectly from the above case analyzis.The colouring protocol illustrates both qualitative and quantitative aspects of supersta-bilization. The qualitative aspect is illustrated by the fact that the convergence following atopology change does not violate a passage predicate. This ensures better service to the userwhen no catastrophe takes place (i.e. in the absence of a transient fault or many topologychanges rapidly occuring). Quantitative aspects can be seen by the O(1) convergence timeand adjustment measure. The same protocol, when started in an arbitrary initial state in-duced by a transient fault, might takeO(n) rounds to converge and a processor could changecolours O(n) times during this convergence. Indeed if the superstabilizing components ofthe protocol are removed, namely S8 and the interrupt statement, then O(n) rounds maybe required for convergence following even a single topology change event starting from alegitimate state.7 Superstabilizing TreeConstructing a spanning tree in a network is a basic task for many protocols. Severaldistributed reset procedures, including self-stabilizing ones, rely on the construction of arooted spanning tree to control synchronization. All existing deterministic self-stabilizingalgorithms to construct spanning trees rely on processor or link identi�ers to select, forexample, a shortest-path tree or a breadth-�rst search tree. In a dynamic network, a changeevent can invalidate an existing spanning tree and require that a new tree be computed.Although computation is required when a change event crashpq removes one of the links inthe current spanning tree, one would hope that a change event recoverpq would require noadjustment to an existing spanning tree. Yet all the self-stabilizing spanning tree algorithmswe know of require, in some cases (e.g. [DIM93], [AG90], [AK93]), recomputation of a treewhen a link recovers, regardless of whether the network currently has a spanning tree or not.The reason is that a processor cannot locally \know" that the system has stabilized and mustmake a deterministic choice of edges to be included in the tree. We propose a superstabilizingapproach to tree construction. The protocol given in this section successfully \ignores" alldynamic changes that add links to an existing spanning tree or crash links that are notcontained in the tree.All trajectories considered in this section are free of crashp or recoverp events; the numberof processors remains �xed at n and we give every processor access to the constant n. Wealso suppose that the network remains, at all states in a trajectory, connected.14

www.manaraa.com

self-stabilizing section :S1 A; B := ;; ;S2 forall q 2 NpS3 doS4 read(q)S5 A := A [colour qS6 if q > p then B := B [colour qS7 odS8 if colourp 62 C then colourp := choose(C nA)S9 if colourp 2 B then colourp := choose(C nA)S10 writeinterrupt section :E1 write (if E = recovp then colourp := choose(C)if E = recovpq ^ p > q then colourp := ?)Figure 2: Superstabilizing Colouring Protocol for Processor p.
15

www.manaraa.com

The basic idea of the protocol is the construction of a least-cost path tree to a processorr designated as the root of the tree. The key innovation of the protocol lies in the de�nitionof link costs. Each link is assigned a cost in such a way that links that are part of thetree have low cost whereas links outside the tree have high cost. Each processor p has tworegister �elds tp and dp. The �eld tp ranges over identi�ers of processors. The register dpcontains a non-negative integer. The function w maps a pair of processor identi�ers to aninteger: wpq = (1 if tp = qn if tp 6= qFigure 3 shows the code of the superstabilizing spanning tree protocol. The property P ofinterest for the tree protocol is that(8p; q : p 6= r ^ tp = q : q 2 Np)and that the collection of tp variables ftp j p 6= r g represents a spanning, directed treerooted at r. A legitimate state for the tree protocol is any state such that (i) property P issatis�ed, and (ii) for each computation that starts in such a state, no processor changes atp variable in the computation.Lemma 7.1 The spanning tree protocol self-stabilizes in O(n) rounds.Proof: Proof by induction on an arbitrary computation �. The induction is based on adirected tree. Let Tr be the maximum subset of processors satisfying: (1) dr = 0, (2) theset ftp j p 2 Tr ^ p 6= r g represents a directed tree rooted at r, (3) for p 2 Tr and p 6= r,register �eld dp satis�es dp = 1+dq where q = tp and, (4) each processor in Tr has executedat least one cycle in �. After one round, dr = 0 holds for the remainder of the computationas does tp 6=? for all p. Therefore, after the �rst round, Tr is non-empty, containing at leastr. The remainder of the proof concerns rounds two and higher, and is organized into threeclaims.Claim 1: (Tr is stable). If p 2 Tr holds at the beginning of the round, thentp and dp do not change during the round. The claim follows by induction ondepth of the tree Tr.Claim 2: (Tr growth). If there exists a processor that is not contained inTr and (8p : p 62 Tr : dp > 2n) holds at the beginning of the round, thenTr grows by at least one processor by the end of the round. The claim followsby examining processors outside of Tr and also neighbouring Tr. Let p be sucha processor, outside Tr and neighbour to q 2 Tr. By Claim 1, dq + wpq < 2n.Therefore, during the round, p cannot choose tp to be some processor s satisfyingds > 2n. Thus Tr grows by at least one processor.16

www.manaraa.com

Claim 3: (dp growth). De�ne Mi to be the minimum d-register value of anyprocessor outside of Tr in round i; then Mi+1 > Mi. The claim is veri�ed byconsidering, for round i and p 62 Tr, assignment to each dp register in that round.During a round, the value obtained for dp is strictly larger than that of someneighbouring dq; if q 2 Tr, then p 2 Tr holds at the end of the round; and ifq 62 Tr, then the claim holds.A corollary of Claim 3 is that following rounds 2n+2 and higher, for every p 62 Tr, the �elddp satis�es dp > 2n. Consequently for rounds 2n + 2 and higher, by Claim 2, if Tr doesnot contain all processors, then Tr grows by at least one processor in each successive round.The lemma follows because there are at most n processors.We de�ne the class of change events � for purposes of superstabilization to be any recovpqevent or any crashpq event such that neither tp = q nor tq = p holds at the moment of thecrashpq event. The passage predicate Q for the superstabilization property is identical toP .Lemma 7.2 The spanning tree protocol is superstabilizing for the class � with supersta-bilization time O(1) and adjustment measure R = 1.Proof: We show that starting from a state �, � ` L, followed by a topology change E ,E 2 �, resulting in a state �, that � ` L holds. In the case of E = crashpq removing anon-tree link, for either processor p or q the weight of the p{q link wpq = n at state �; byassumption of � ` L, it follows that computation of d and t �elds produce identical resultsin any round following � since these are necessarily based on unit w-values. In the case ofE = recovpq the weight of the new p{q link is wpq = n at state �, hence distances are notreduced by addition of the new link and computation of d and t �elds produce identicalresults in any round following �. Therefore � ` L.The tree protocol of this section illustrates quantitative and qualitative aspects of super-stabilization. Since convergence occurs atomically with a change event from the class �,qualitative aspects of superstabilization are instantly satis�ed | the system is always in alegitimate state! The quantitative aspects are due to the O(1) superstabilization time andadjustment measure for changes in the class �.The simple tree protocol of Figure 3 is not superstabilizing for events such as a treelink crash. Examination of this case reveals that the fragment of the tree that remainsconnected to the root following a link removal remains stable, which ful�lls the goal of localadjustment in response to dynamic change. However to obtain a superstabilizing protocol,some machinery would be needed to control convergence following a tree link crash. Insteadof developing such machinery for the speci�c task of tree construction, we tackle the generalproblem of superstabilization in subsequent sections.17

www.manaraa.com

self-stabilizing section :S1 x; y := 1; ?S2 forall q 2 NpS3 doS4 read(q)S5 if x > (dq + wpq) then x; y := (dq + wpq); qS6 odS7 dp; tp := x; yS8 if p = r then dp; tp := 0; rS9 writeinterrupt section :E1 skip Figure 3: Superstabilizing Tree Protocol for Processor p.
18

www.manaraa.com

8 Update ProtocolTo simplify the presentation of our general methods for superstabilizing protocols, we em-ploy a self-stabilizing update protocol. We view the update protocol as the simplest andclearest self-stabilizing protocol for large class of tasks including: leader-election, topologyupdate and diameter estimation. To describe the task of the update protocol, suppose everyprocessor p has some �eld image xp; for the moment, we consider xp to be a constant. Theupdate problem is to broadcast each xp to all processors. This problem is called topologyupdate when the �eld xp contains all the local information about p's links and networkcharacteristics. Many dynamic system are already equipped with a topology update pro-tocol that noti�es processors of the current topology; in such instances our general methodacts as an extension to this existing topology update. An optimal time (�(d) round) self-stabilizing solution to the topology update is given in [SG89, Do93]. To insure a desireddeterministic property of the protocol, we assume that the neighbourhood of a processorNp is represented as an ordered list.Let each processor p have, in addition to xp, a �eld ep, where ep contains three-tuples ofthe form hq; u; ki, in which q is a processor identi�er, u is of the same type as xp, and k is anon-negative integer. Let distT (p; q) be the minimum number of links contained in a pathbetween processors p and q in topology T ; the third component of a tuple is intended torepresent the dist-value for the processor named in the tuple's �rst component. We makesome notational conventions in dealing with tuples: with respect to a given (global) state,hq; xq; ki is a tuple whose second component contains the current value of �eld xq. In proofsand assertions, we specify tuples partially: hq; ; i 2 ep is the assertion that processor p'se-�eld contains a tuple with q as its �rst component. Each processor uses local variablesA and B that range over the same set of tuples that ep does. For �eld image ep and setvariables A and B, we assume that set operations are implemented so that computationson these objects are deterministic.The update protocol's code uses the following de�nitions. Let processors(A) be the list ofprocessor identi�ers obtained from the �rst components of tuples in A. Let mindist(q; A) bethe �rst tuple in A having a minimal third component of any tuple whose �rst component isq (in case no matching tuple exists, then mindist is unde�ned.) De�ne Annhq; �; �i to be thelist of tuples obtained from A by removing every tuple whose �rst component is q. De�neA++h�; �; 1i to be the list of tuples obtained from A by incrementing the third componentof every tuple in A. De�ne initseq(A) by the following procedure: (1) sort the tuples ofA in nondecreasing order of the third element of a tuple; (2) from this ordered sequenceof tuples, compute the maximum initial pre�x of tuples with the property: if hq; u; ki andhq0; u0; k0i are successive tuples in the pre�x, then k0 � k + 1. Then initseq(A) is the set oftuples in this initial pre�x.For the update protocol, we de�ne a distance-stable state to be any state for which (1)each processor p has exactly one tuple hq; y; dist(p; q)i in its ep �eld for every processor qin the network reachable by some path from p in the current topology; (2) ep contains no19

www.manaraa.com

other tuples; and (3) each computation that starts in such a state preserves (1) and (2). Alegitimate state for the update protocol is a distance-stable state in which requirement (1)is strengthened to: each processor p has exactly one tuple hq; xq; dist(p; q)i in its ep �eld forevery processor q | in other words, the x-�eld images are accurate. Figure 4 presents theprotocol.Theorem 1 The update protocol of Figure 4 self-stabilizes in O(d) rounds.(Proof given in Appendix).Nowhere in the code of the update protocol is the size of the network used, nor is abound on the number of processors in a connected component assumed; consequently anynumber of processors can be dynamically added to the system, provided processor identi�ersare unique. Moreover, the local implementation of operations on processor variables A, B,and even the �eld ep can use dynamic memory allocation. The following lemma shows thatdynamic memory operations do not use unbounded amounts of memory.Lemma 8.1 For any computation � of the update protocol, no processor requires morethan O(� �K � n) space for variables and register �elds, where in the initial state of �: �is the maximum number of neighbours a processor has; n is the number of processors; andK is the maximum number of tuples of any processor's A, B or e-�eld in the initial stateof �.Proof: The computation of B consists of at most nK tuples, since tuples with duplicateidenti�ers are not added to B by C8 and the number of identi�ers is bounded by nK.Moreover, no statement is capable of introducing a tuple with a processor identi�er notalready present in another tuple. Hence any assignment by C10 places at most nK tuplesin ep. The collection procedure to construct A is the union of at most � sets of at mostnK tuples (K tuples in the �rst round, and nK tuples in subsequent rounds).Although the lemma shows that the update protocol does not use unbounded space in itscomputation, this is insu�cient for a self-stabilizing implementation: suppose processors areimplemented on machines with �xed memory limits and an initial state of a computation issuch that the number of tuples is at or near the memory limit; subsequent computation maythen abort by exceeding the memory limit in a dynamic allocation request. Therefore, inorder to claim that the update protocol is self-stabilizing, we assume that every trajectory'sinitial state satis�es nK � N , where N is some appropriate limit related to memory limitsof processors (even if the abort resets memory, some minimal amount of memory is neededto guarantee self-stabilization of the update protocol).Note that upon stabilization, the ep register contains only those tuples representingreachable nodes in the network. Therefore the amount of memory needed for ep can bedynamically adjusted during a computation to the minimum amount needed to represent20

www.manaraa.com

the list of tuples; this idea is called memory adaptivity in [AEH92]. The following lemma isan observation due to Gerard Tel.5Lemma 8.2 The update protocol of Figure 4 is memory-adaptive.Proof: Upon stabilization, the necessary size of the e-�eld is bounded by a function ofthe number of processors.A corollary of self-stabilization is that, if one of the xp �elds is dynamically changed,the protocol will e�ectively broadcast the new xp value to other processors. Of particularinterest are some properties that relate a sequence of changes to an xp �eld to the sequencexp values observed at another processor q. We distinguish three monotonicity properties ofan update protocol:Static Monotonicity. Let � be a legitimate state for the update protocol wherexp = c0 at �. Suppose � is a topology-constant computation originating withstate � and suppose �eld xp is changed at distinct states �1; �2; . . . of � to havethe values c1; c2; . . ., where state �i occurs before �j for i < j. Static monotonicityis satis�ed if, for any states � and
 in � such that � occurs before
: if processorq sees ci as the value of xp at state � and sees cj as the value of xp at state
,then i � j holds.Dynamic Monotonicity. Let � be a legitimate state for the update protocolwhere xp = c0 at �. Suppose � is a trajectory originating with state � andsuppose �eld xp is changed at distinct states �1; �2; . . . of � to have the valuesc1; c2; . . ., where state �i occurs before �j for i < j; � may have topology changesinterleaved with steps of processors, including possibly the crash and recoveryof processor p. Dynamic monotonicity is satis�ed if, for any states � and
 in �such that � occurs before
: if processor q sees ci as the value of xp at state �and sees cj as the value of xp at state
, then i � j holds.Impulse Monotonicity. Let � be a legitimate state for the update protocol ina topology T where xp = c0 at �. Let � be the state obtained by makinga single topology change E to T and the assignment xp := c1. Let � be atopology-constant computation originating with state �. Impulse monotonicityis satis�ed if, for any states � and
 in � such that � occurs before
: if processorq sees c1 as the value of xp at state �, then q sees c1 as the value of xp at state
.Note that with static and dynamic monotonicity, we admit the possibility of \overwriting"of xp before its value is successfully broadcast to all processors; however, a subsequence ofFIFO-delivery is guaranteed by monotonicity. If xp is changed \slowly enough", meaning5Remark during presentation, December 1993. 21

www.manaraa.com

that the protocol successfully stabilizes between changes to xp, then a FIFO broadcast ofxp-values is obtained. In Section 9, we introduce an acknowledgement mechanism so that aprocessor does not change the broadcast value of interest until all other processors withina connected component have received the current value. The acknowledgement mechanismdoes not itself guarantee FIFO broadcast | monotonicity is also required. As indicated infollowing theorems, the update protocol satis�es static and impulse monotonicity, but notdynamic monotonicity; further measures are introduced in the next section to deal with thelack of dynamic monotonicity.Theorem 2 The update protocol of Figure 4 enjoys static monotonicity.The theorem can be proved by induction on a lexicographic measure composed of pathlength and the ordering of links by a processor's neighbourhood; essentially the deterministicordering of links de�nes a broadcast tree. Our general method does not exploit staticmonotonicity, so we omit details of the proof.In the sequel, for dynamic and impulse monotonicity, we make a restriction on a topologychange event E that adds a node p to the network: the ep-�eld contains no tuples. Giventhis restriction, the following monotonicity theorems hold.Theorem 3 The update protocol of Figure 4 enjoys impulse monotonicity.(Proof appears in appendix, Section 12.)Theorem 4 The update protocol of Figure 4 does not satisfy dynamic monotonicity.A counter-example provides proof of this theorem and is presented in an appendix (Section12). This counter-example actually shows that the update protocol does not satisfy evenmore restricted forms of dynamic monotonicity: the example is constructed with a singleinitial topology change and no further topology changes, and only two changes to a register�eld.9 General SuperstabilizationThis section introduces a general method for achieving superstabilization with respect to theclass � of single topology changes. Our general method can be seen as a compiler that takesself-stabilizing protocol P and outputs a new protocol P 0 that is both self-stabilizing andsuperstabilizing. This is done by modifying protocol P and superimposing a new componentcalled the superstabilizer.The superstabilizer makes use of function F , described in Section 5, to determine a newlegitimate state for protocol P following a topology change E . It is the responsibility of22

www.manaraa.com

C1 A;B := ;; ;C2 forall q 2 NpdoC3 read(q)C4 A := A [eqodC5 A := A n nhp; �; �iC6 A := A++h�; �; 1iC7 forall q 2 processors(A)doC8 B := B [fmindist(q; A)godC9 B := B [fhp; xp; 0igC10 ep := initseq(B)C11 write Figure 4: Update Protocol for Processor p.
23

www.manaraa.com

the superstabilizer to \hide" E from any processor in such a way that no user of protocolP can observe a state inconsistent with the current topology; this is done by making theglobal transition between legitimate states for di�erent topologies e�ectively atomic, thussparing procotol P from any stabilization e�ort. Thus the passage predicate for generalsuperstabilization is a �lter-based predicate.The general method is a result primarily for the qualitative aspect of superstabilization;the superstabilization time is O(d), which may not improve over the self-stabilization com-plexity of the original protocol P ; however, the general method does make possible minimaladjustment following a topology change and provides the added bene�t of a �lter predicatethat can be used by a consumer of P 's service to delay use of the service during adjustmentfollowing dynamic change.The superstabilizer consists of two components, a modi�ed version of the update protocoland an interrupt statement. Atomic steps of P and the update protocol are then interleaved.We modify P , as follows: each action of P at processor p is guarded by a boolean variablefreezep so that when freezep holds, no action of P is enabled at processor p and the programcounter remains static. Our superstabilizer insures that, starting from any initial state, allfreeze �elds eventually become false in the absence of topology changes.The interface between the superstabilizer and P at processor p consists not only of thefreezep variable, but a pseudo-variable snapp, which is de�ned to be the collection, withrespect to protocol P , of all local variables, shared �elds, and the program counter of Pfor processor p. The superstabilizer can read and write snapp. We denote by snap a set ofsnapp variables, one for each processor. Our general method is, in brief, the following: aftera topology change, P is frozen at all processors and a snap value is recorded; subsequentlya snap value appropriate for the new topology is computed and each frozen processor isassigned its portion of the new snap value; and �nally all processors are thawed.Our programming notation given in Section 2 makes local images of register �elds avail-able to program operations: such images can be of a processor's own register or that of itsneighbouring processors; for example the code of Figure 4 permits processor p to refer toeq for q 2 Np. The update protocol makes an image of each processor's x-�eld availableto every other processor within a connected component. For convenience in describing thesuperstabilizer, we divide the x �eld into four sub�elds:xp = [ap hp tp up]We then extend the programming notation to allow any processor to refer to sub�eldsof any other processor. Thus processor p can refer to aq for any q 2 processors(ep) byusing images provided in the e-�eld's tuples. Of course, these images may be out-of-date,which necessitates synchronization measures in the superstabilizer; such synchronization isachieved in phases to coordinate freezing and snapshots.To control the phases of superstabilization, the sub�eld ap is used; it is a ternary-valuedsub�eld provided for the three phases of superstabilization. These phases are:24

www.manaraa.com

Phase 0 is the normal state of the superstabilizer, in which protocol P is active and thesuperstabilizer is idle. When (8p :: ap = 0) holds, we consider the superstabilizationto be inactive (terminated).Phase 1 consists of freezing protocol P and collecting snapshots from the frozen processors;also in this phase an election takes place among all processors incident on a topologychange to determine a single coordinator of the following phase. Phase 1 is active if(9p :: ap = 1) and (8p :: ap � 1).Phase 2 is concerned with computing a new global state for protocol P and distributingthe new state to all processors. Phase 2 is active if (9p :: ap = 2), remains activeuntil (8p :: ap = 2) holds, and thereafter terminates in order to resume execution ofPhase 0.To detect progress of phases, we employ an acknowledgment sub�eld hp. This sub�eldis a vector of ternary values whose elements are images known to p of other processor a-sub�elds: the protocol sets hp[r] to contain the image of ar, as determined from p's imageof xr broadcast via the update protocol. Further, since hp is broadcast via the updateprotocol to every processor, it is possible for a processor r to test the status of every otherprocessor's image of ar.In addition to the a and h-sub�elds, we de�ne additional sub�elds of xp to contain snapvalues. Sub�eld tp contains a value of type snapp, which is the portion of the state of pthat is related to P . We also de�ne the sub�eld up to contain a global snap value, i.e. up[r]contains a snapr value. We denote by sp the collection of all tr images obtained from xpsub�elds.To make a concise presentation, an additional device is used in the code of the interruptstatement. The function refresh(ep) reproduces ep except that the value of the xp �eld isupdated, i.e. refresh(ep) = (ep n nhp; �; �i) [fhp; xp; 0ig.The interrupt statement for the superstabilizer is given in Figure 5. In response to atopology change E incident on processor p, the program counter of the protocol is reset toS1, the neighbourhood Np is adjusted to re
ect E , and the write operation is atomicallyexecuted. This operation halts P by setting freezep to true.The remaining component of the superstabilizer consists of the combination of Figures4 and 6, i.e. a modi�ed update protocol. Statements U1{U8 should be inserted betweenstatements C6 and C7 to obtain the complete protocol. All quanti�cations over processorsin expressions (such as (8q : aq = 0)) are implicitly quanti�ed over processors(A) [fpg inthe superstabilizer code. Some motivation for statements U1{U8 is given by:U1 represents the election of a single coordinator from all the processors incident on thetopology change event E . Although all incident processors execute S1 and set ap = 1,all but one of processor per connected component will revert back to ap = 0 upondetection of a competing coordinator with a higher identity.25

www.manaraa.com

U2 is the transition from Phase 1 to Phase 2. This occurs when p is coordinating Phase1 and detects that every other processor has either acknowledged Phase 1 or appearsto have already acknowledged Phase 2 (because of an illegitimate initial state). Atstatement U2, a new global state is computed using adjustment function F , based onthe collected snapshots of all acknowledging processors.U3 is the transition from Phase 2 back to Phase 0. This occurs when p is coordinatingPhase 2 and detects that every other processor has either acknowledged Phase 2 orappears to have already acknowledged Phase 0 (because of an illegitimate initial state).U5 acknowledges Phase 0.U6 acknowledges Phase 1, but only if it appears that the last known phase for a coordi-nating processor was Phase 0. This will make the transition from Phase 1 to Phase2 monotonic, since processors will not switch allegiance back to Phase 1 after seeingPhase 2.U7 acknowledges Phase 2, but only if it appears that the last known phase for a coordi-nating processor was Phase 1. This will make the transition from Phase 2 to Phase0 monotonic, since processors will not switch allegiance back to Phase 2 after see-ing Phase 0. The step U7 also adopts a new local state as provided by the phasecoordinator.U8 insures that processors set freeze bits so long as there is phase activity by some coor-dinator.Note that processors react to superstabilization phases as soon as they are made availablevia the update protocol; in particular, as soon as a (possibly distant) topology change isvisible, the code of Figure 6 freezes protocol P and records a snapshot.The combination of the superstabilizer and modi�ed protocol P results in a supersta-bilizing protocol P 0. A legitimate state for P 0 is any state in which: (1) the variables,�elds and program counter with respect to P satisfy L; (2) the update protocol componentof the superstabilizer is in a legitimate state (all e-�elds have accurate tuples); (3) everyfreeze variable is false, (8p :: ap = 0); and (4) each computation that starts in such a statepreserves (1){(3).Lemma 9.1 The predicate fp � freezep is a �lter predicate for the superstabilizer; andthe superstabilizer converges in O(d) rounds to (8p :: :fp).Proof: First we show that the protocol stabilizes to ap = 0 for every p in any computation;after such stabilization, it follows by self-stabilization of the update protocol that in O(d)rounds, every image of ap is also accurate. Then in one additional round statement U8 isexecuted at every processor, which implies stabilization to (8p :: :fp).26

www.manaraa.com

To show that the protocol stabilizes to (8p :: ap = 0), consider an arbitrary computation�. Observe that no statement of the code in Figure 6 can assign to ap in the case thatap = 0 is a precondition; in other words, ap = 0 is locally stable. Therefore it su�ces toshow that eventually ap = 0 is obtained for every p.Suppose, heading for contradiction, that ap 6= 0 holds for p 2 D throughout �, where Dis some non-empty set of processors. Let
 be a su�x of � in which no processor assignsap := 0. Thus statements U1 and U3 are not executed by any processor in
. After O(d)rounds of
, all ap images accurately and permanently allow any processor p to test ar = 0for any known r; let 	 be the su�x of
 with this property. Observe that jDj = 1 in
 if the network's topology is connected. This follows because after O(d) rounds of
, ifap 6= 0 and ar 6= 0 for p 6= r, then statements U6 and U7 executed at all processors insure(8s :: hs[p] 6= 0) and (8s :: hs[r] 6= 0); following another O(d) rounds, the images of allh-�elds are broadcast to p and r, which implies statement U1 is executed for one of the twoprocessors, leading to a contradiction. Hence there is at most one processor p satisfyingap = 1 in any connected component in computation
. If ap = 1 then eventually the imageof ap is broadcast by the update protocol and via the acknowledgement of U6, the predicate(8q :: hq[p] 6= 0) holds and p can detect this using images of the hq �elds. That is, eithera processor q will acknowledge ap = 1 or permanently retain hq[p] = 2. In either case,eventually U2 is executed for p. And if ap = 2 then by a similar argument, U3 is eventuallyenabled, but this contradicts the de�nition of D.That fp is a �lter predicate is shown by the above contradiction. It remains to showthat convergence to (8p :: :fp) occurs in O(d) rounds of any computation. In the casewhere a processor p is the only processor satisfying ap 6= 0 within a connected component,the same update/acknowledge arguments given above show that in a constant number ofbroadcasts via the update mechanism, the protocol stabilizes to ap = 0, which implies O(d)convergence. In the case of numerous, competing processors satisfying ap 6= 0, we appeal toarguments about statement U1 to conclude that a winner among the competing processorsis obtained in O(d) rounds.Lemma 9.2 The general method self-stabilizes in O(d + K) rounds, where O(K) is theworst-case stabilization time of P .Proof: After O(d) rounds, by Lemma 9.1, all freeze bits are permanently false in anycomputation. Thereafter the superstabilizer component does not hinder progress of protocolP , which reaches legitimacy by assumption in O(K) rounds.Lemma 9.3 The protocol of Figures 5 and 6 is superstabilizing with superstabilizationtime O(d).Proof: Lemma 9.2 shows that the protocol is self-stabilizing; it remains to show for anytrajectory beginning from a legitimate state followed by a single topology change, that in27

www.manaraa.com

every state of the computation any set of processors with false �lter predicates is locallylegitimate. The proof has the following structure. The computation following a topologychange can be divided into three segments. In the �rst segment, the set of all processorswith fp = false is locally legitimate with reference to the initial topology of the trajectory.In the second segment, (8p :: fp) holds. In the third segment, the set of all processors withfp = false is locally legitimate with reference to new topology.Let � be a trajectory with initial state � ` L and initial transition due to some topologychange event E resulting in a second state �. Let 	 be the su�x of � beginning at state� (is a fair computation). Let H be the set of processors for which there exists a pathin T :� to some processor incident on E . All our reasoning about local states is con�ned toprocessors in H since if the network is partitioned throughout �, processors in componentsnot related to E trivially remain in legitimate states with false �lter predicates. Let H [r]for any r 2 H denote the maximum subset G � H such that r 2 G and the processors of Gare connected in T :�. In case there are r; s 2 H so that H [r] 6= H [s], then we may reasonabout the superstabilization of the components corresponding to H [r] and H [s] separatelyfor the proof of superstabilization, since these components are not connected in T :�. Forany r 2 H , let leader :H [r] be the processor v with maximum identity such that v 2 H [r]and v is incident E .The remainder of the proof is organized into six claims. To streamline the proof, we con-sider an arbitrary set of processors H [r] and computations of these processors. Let v beleader :H [r]. The following predicates are de�ned for the claims:Ph1 � av = 1 ^ (8q : q 6= v : aq = 0) ^ (8q :: hq[v] = 1)Ph2 � av = 2 ^ (8q : q 6= v : aq = 0) ^ (8q :: hq[v] = 2)Claim 1: The following temporal6 property is claimed for 	: for any processor p, ap = 1holds continuously in 	 until processor p either observes Ph1 or observes (aq = 1 ^ (8r ::hr[q] = 1)) for some q > p (note that just because p observes a condition from its imagesof other processor's a and h �elds does not imply that the condition holds over the actual�elds). The claim is a consequence of the conditions on statements U1 and U2.A corollary of Claim 1 is that av = 1 holds until v observes Ph1; moreover, when v observesPh1, it follows from U6 and U8 that, for every p, fp holds at some previous state in 	. Thisobservation is strengthened by the following claim.Claim 2: For any processor p, fp holds continuously in 	 until processor v observes Ph1.Statement U8 sets freezep in the presence of some image aq = 1. Therefore we strengthenthe claim to: processor p observes (9q :: aq = 1) holds continuously in 	 until processorv observes Ph1. Consider that a processor p observes some aq = 1 for some q. By impulsemonotonicity of the update protocol, the image aq = 1 is stable so long as processor q does6A de�nition of the until operator can be found in [CM88].28

www.manaraa.com

not change aq. The only statements capable of changing aq from the value 1 are statementsU1 and U2. Statement U2 may change aq only if every processor in H [q] has acknowledgedaq = 1; if q = v and statement U2 changes av , then v observes Ph1, and the claim holds;if q 6= v and statement U2 changes av, we have a contradiction since U1 is not executedin the same cycle and q is not the maximum identi�er having aq = 1. Therefore considerstatement U1. If aq is changed by U1, some other processor r with a larger identi�er appears(at q) to satisfy ar = 1 and (8s :: hs[r] = 1) holds. Thus a processor q cannot change aqfrom 1 to 0 until �rst detecting that some other processor r of larger identi�er has ar = 1and every processor has observed ar = 1 at some point in computation 	. By induction,the predicate (9s :: as = 1) as determined by images at every processor in H [v] is stableat least until av is changed from 1 to 0.Claim 3: In O(d) rounds, a state satisfying Ph1 is obtained; moreover, when v observesPh1, then Ph1 holds and sv contains a valid snapshot of the processors of H [r]. Claim 2shows that fp is stable for every p 2 H [v] at least until Ph1 is observed by v (and Claim 1'scorollary shows that fp holds at every p). Consider any computation � beginning at state� so that Ph1 is not observed by v at any state. Induction over distance from v is now usedto prove (8q :: fq ^ hq [v] = 1) (1)i.e. in round k + 1 all processors q at distance k from v satisfy the term of (1). The basisof the induction is distance zero: in state �, from the interrupt statement, fv holds, andafter one round hv [v] = 1 holds, by the assumpion of a legitimate state for �, meaning� ` hv [v] = 0: For the induction, suppose the term of (1) holds for all processors at distancek from v following round k + 1. In round k + 2, any processor q at distance k + 1 from vwill read a tuple hv; ; ki from a neighbour and update its own tuple for �elds correspondingto v, therefore setting fq and hq[v] = 1.To complete proof of the Claim 3, we observe that av = 1 in state � and continues to hold atleast until processor v observes (8q :: hq[v] = 1). However, for any competitor of v, namelya processor r so that ar = 1 in state �, the same cycle wherein hr[v] := 1 occurs also setsar := 0 at statement U1. Statement U1 makes no assignment for processor v by assumptionof v's maximum identi�er. Finally, we observe that within computation � the predicatehq[v] = 1 is stable since av = 1 is stable at least until (1) holds and the image av = 1 at anyprocessor is stable by impulse monotonicity of the update protocol. Statement U8 insuresthat fp is set and a snapshot is taken.Claim 4: Let 	0 be the segment of 	 identi�ed by Claim 2, that is, 	0 begins at state� and ends at some state where v observes Ph1. The state � following the �nal state of	0 is obtained by the execution of U2, which sets av := 2 and computes a new state forthe processors in H [v]. Let
 be the segment of 	 beginning at state �. Claim: for anyprocessor p, fp holds continuously in
 until processor v observes Ph2; also hp[v] = 2 holds29

www.manaraa.com

continuously in
 until v observes Ph2. To show this claim, we consider any p and showthat hp[v] = 1 holds until hp[v] = 2, and hp[v] = 2 holds at least until v observes Ph2. Atthe initial state of
, hp[v] = 1 holds for any p 6= v by construction. Now consider someprocessor that changes hp[v] from 1 to 2 in
. This can only be due to execution of U7;although the update protocol is not monotonic in the broadcasted change of av from 1 to2, statement U6 does not assign 1 to hp[v] for any processor that has already executed U7in
. Thus the change to hp[v] is monotonic within
. Also, although images of av mayswitch between 1 and 2 during the course of
, the predicate av 6= 0 remains stable, henceU8 cannot assign false to the freeze variable.Claim 5: Within O(d) rounds of computation
, a state satisfying Ph2 is obtained; more-over, when v observes Ph2, then Ph2 holds and every processor in H [v] has adopted theportion of the state computed by v via U2 at the state prior to
. Claim 4 shows thatfp is stable for every p 2 H [v] at least until Ph2 is observed by v. Claim 4 also showsthat hp[v] = 2 is stable until v observes Ph2. Since initially, hp[v] = 1 holds at every p,the observation of (8p :: hp[v] = 2) implies each processor p has acknowledged the secondphase and adopted a new state of protocol P via statement U7. The O(d) round complexitycan be shown by induction, similar to the argument given for Claim 3.Claim 6: Let � be the segment of 	 identi�ed by Claim 5, beginning after execution ofU3 at processor v. The claim is that for any processor p, hp[v] = 2 holds continuously in
until hp[v] = 0, that hp[v] = 0 is stable, and hp[v] = 0 is detected by p within O(d) rounds.First observe that a corollary of Claim 5 is that no image of av satis�es av = 0 at the initialstate of �. Now the logic of statements U5 and U7 prove the claim. After a processor passigns hp[v] = 0 via U5, subsequent execution of U7 is inhibited. Thus the switch fromhp[v] = 2 to hp[v] = 0 is monotonic. The O(d) round complexity can be shown by inductionon distance from v.Claims 1{6 together divide a computation following a topology change into segments. Oncea processor p satis�es fp, then fp holds until p has received and assigned a new state forP ; subsequently fp continues to hold until :fp holds (implied by Claim 6), and then :fp isstable. The time for this computation is O(d) rounds.To complete the proof of superstabilization, we consider subsets D = f p j p 2 H [v] ^ :fp gand verify that D is locally legitimate. For the segment �, each processor p for which :fpholds may execute protocol P . We show that local legitimacy holds for D by structuralinduction. The basis of the induction is the initial state �, where all processors incidenton E have P -states that are legitimate for T :�. For the induction, we consider executionof protocol P within �. With regard to protocol P , a processor p may communicate withneighbours. Such communications fall into two categories: if p executes a read of a neighbourprocessor q for which :fq holds, then :fq holds continuously from the initial state of � upto that step; and if fq holds, then q's state and registers with respect to protocol P are those30

www.manaraa.com

S1 write0BBBBBB@ ap := 1freezep := truetp := snappep := (; if E = recovprefresh(ep) if E 6= recovp 1CCCCCCAFigure 5: Superstabilizer: Processor p Interrupt Section.of T :� by the inductive hypothesis. This argument discharges the proof of superstabilizationfor segment �; segment
 need not be examined, since (8p :: :fp) holds at all states. Itremains to examine D with respect to segment �. This is a simple matter since at theinitial state of �, each processor p has a local state legitimate to T :�, and the setting offp := false is implied monotonic by Claim 6.10 Continuous General SuperstabilizationThis section introduces a general method for achieving continuous superstabilization withrespect to the class � of single topology changes (link or processor crash or recovery). Themethod described in this section is a generalization of the technique used in Section 9. Themain di�erence is lies in the synchronization of multiple topology changes, which is achievedthrough the use of incarnation numbers associated with topology changes.The general method for superstabilization described in Section 9 relies on the impulsemonotonicity of the update protocol to coordinate the transition from a legitimate state inone topology to a legitimate state in another topology. In the presence of multiple topologychanges between computations of a trajectory, or if a topology change should occur followinga computation that has not yet reached a legitimate state, then impulse monotonicity isnot strong enough to guarantee orderly coordination of the snapshot and reset mechanism.In order to enforce monotonicity of the update protocol, we introduce incarnation numbersassociated with each topology change (and use processor identi�ers to break ties).The general method for continuous superstabilization is structured like the method ofSection 9: it can be seen as a compiler that takes self-stabilizing protocol P and outputsa new protocol P 0 that is both self-stabilizing and continuously superstabilizing. The su-perstabilizer consists of two components, a modi�ed version of the update protocol and aninterrupt statement. For convenience in describing the superstabilizer, we divide the x �eldinto six sub�elds: xp = [ap hp bp gp tp up]31

www.manaraa.com

U1 if (ap = 1 ^ (9q :: aq 6= 0 ^ q > p ^ (8r :: hr[q] 6= 0)))then ap := 0U2 if (ap = 1 ^ (8q : q 6= p : aq = 0) ^ (8q :: hq[p] 6= 0))then ap; up := 2; F(sp)U3 if (ap = 2 ^ (8q :: hq[p] 6= 1))then ap := 0U4 forall q 2 processors(A) [fpgdoU5 if aq = 0 then hp[q] := 0U6 if aq = 1 ^ hp[q] = 0 then hp[q] := 1U7 if aq = 2 ^ hp[q] = 1 then hp[q]; snapp := 2; uq[p]odU8 if (9q 2 processors(A) [fpg :: aq 6= 0)then freezep ; tp := true ; snappelse freezep := falseFigure 6: Superstabilizer: Update Extension for p.
32

www.manaraa.com

To control the phases of superstabilization, the sub�eld ap is used; it is a ternary-valuedsub�eld provided for the three phases of superstabilization, as described in Section 9. Other�elds are also as described in Section 9, with the exception of bp and gp �elds, which are usedfor the incarnation numbers. The �eld bp is an unbounded integer, used as a timestamp tosynchronize concurrent topology changes. Intuitively, each topology change causes incidentinterrupt statements to initiate Phase 1 with an incarnation number (the timestamp bp) thatis greater than any previously known incarnation number. Processors under the control ofmultiple phase coordinators, possibly due to concurrent topology changes, should followonly the snapshots and resets from the coordinator having the largest incarnation number(breaking ties by processors' identi�ers). The bookkeeping to insure that the most recenttopology change has the largest incarnation number requires a recording technique similarto that used for phase coordination: gp is a vector of integers whose elements record thelargest bq values observed by processor p.The interrupt statement for the superstabilizer is given in Figure 7. In response to atopology change E incident on processor p, the program counter of the protocol is reset toS1, the neighbourhood Np is adjusted to re
ect E , and the write operation is atomicallyexecuted. This operation halts P by setting freezep to true. Note that the interrupt stepincrements bp to obtain a new incarnation number.The remaining component of the superstabilizer consists of the combination of Figures4 and 8, i.e. a modi�ed update protocol. Statements U1{U12 should be inserted betweenstatements C6 and C7 to obtain the complete protocol. To simplify presentation, the nota-tion maxbp is introduced:maxbp � max (fbpg [f bq j q 2 processors(ep)g [f gp[q] j q 2 processors(ep)g)Thus maxbp represents the maximum incarnation number known at processor p.The code of Figure 8 essentially consists of two parts: statements U1{U4 keep theincarnation numbers of various processor consistent; statements U5{U12 control the phasesof superstabilization. In particular:U1 insures that an idle processor copies the largest known incarnation number.U2 is a kind of election: if a processor is coordinating the phases of superstabilization, butencounters another competing processor with a larger incarnation, then it abandonssuperstabilization (yielding to the larger incarnation).U3 covers a case not normally possible starting from a legitimate state: a processorcoordinating the phases of stabilization encounters an idle processor with a largerincarnation number; in this case, the coordinating processor restarts the phases usinga new, higher incarnation number. Statement U3 is crucial to the self-stabilizingproperty of the superstabilizer | coordinating processors are guaranteed to eventuallybecome idle (in the absence of topology changes).33

www.manaraa.com

U4 essentially repeats the logic of U2, but the election occurs because two competingprocessors have the same incarnation number: the one with the larger identi�er wins.U5 is the transition from Phase 1 to Phase 2 by the coordinating processor; this occurswhen every processor has acknowledged Phase 1 and transmitted a snapshot. Here anew global state is computed and broadcast via up.U6 is the transition from Phase 2 back to Phase 0. This transition also produces a new,higher incarnation number. The incremented incarnation number helps in insuringmonotonicity in the broadcast of register �elds via the update protocol.U8 shows how p keeps track of the incarnation number of every processor q. Thus gp[q]represents the largest incarnation number recorded by p for processor q. If bq is lowerthan expected at processor p, then p will refrain from acknowledging Phase 0 by q.U9 is where p acknowledges that q is in Phase 0, but only if q has a reasonable (not toolow) incarnation number. This is the trick to make things monotonic, as far as phasesgo | recall that the interrupt atomically increments bp and sets Phase 1, so no processwill go back to Phase 0 once it records a larger incarnation number in gp[q].U10 is the acknowledgement of Phase 1; this is only permitted when the coordinatingprocessor appears to be in Phase 0 (to insure monotonicity of phase transition).U11 is the acknowledgement of Phase 2 and adopting a new local state set by the coor-dinating processor of Phase 2. Note that Phases 1 and 2 are monotonic | once aprocessor acknowledges Phase 2, it will ignore any news of Phase 0 or Phase 1 fromthat processor at the current incarnation number.U12 insures that any phase activity freezes a processor.The combination of the superstabilizer and modi�ed protocol P results in a superstabilizingprotocol P 0. A legitimate state for P 0 in a topology T is any state in which: (1) the variables,�elds and program counters with respect to P satisfy LT ; (2) the update protocol componentof the superstabilizer is in a legitimate state (all e-�elds have accurate tuples); (3) everyfreeze variable is false, (8p :: ap = 0); and (4) each computation that starts in such a statepreserves (1){(3).Lemma 10.1 The predicate fp � freezep is a �lter predicate for the protocol; and theprotocol converges in O(d) rounds to (8p :: :fp).Proof: We show the stronger property that the protocol stabilizes to ap = 0 for every pin any computation; after such stabilization, it follows by self-stabilization of the updateprotocol that in O(d) rounds, every image of ap is also accurate. Then in one additionalround statement U12 is executed at every processor, which implies stabilization to (8p :::fp). 34

www.manaraa.com

To show that the protocol stabilizes to (8p :: ap = 0), consider an arbitrary computation�. Observe that no statement of the code in Figure 8 can assign to ap in the case thatap = 0 is a precondition; in other words, ap = 0 is locally stable. Therefore it su�ces toshow that eventually ap = 0 is obtained for every p.Suppose, heading for contradiction, that ap 6= 0 holds for p 2 D throughout �, where Dis some non-empty set of processors. Let
 be a su�x of � in which no processor assignsap := 0. Thus statements U2, U4 and U6 are not executed by any processor in
. After O(d)rounds of
, all ap images accurately and permanently allow any processor p to test ar = 0for any known r; let 	 be the su�x of
 with this property. We now claim that maxbpis bounded for any processor p in computation 	. Only two statements, U3 and U6 canincrement an incarnation number, but U6 is eliminated from consideration by assumption.However if U3 is executed by p, then processor p is the only processor with ap 6= 0. AfterO(d) rounds of 	, all br images for r 6= p are accurate. Thus U3 is executed a �nitenumber of times at processor p. Let � be the su�x of 	 in which U3 is not executed byany processor. Observe that jDj = 1 if the network's topology is connected. This followsbecause after O(d) rounds of �, all bp images are permanently accurate and if ap 6= 0 andar 6= 0 for p 6= r, then one of statements U2 or U4 will execute, which is a contradiction.Hence there is at most one processor p satisfying ap = 1 in any connected component incomputation �. If ap = 1 then eventually the image of ap is broadcast by the updateprotocol and via the acknowledgement of U10, the predicate (8q :: hq[p] 6= 0) holds and pcan detect this using images of the hq �elds. That is, either a processor q will acknowledgeap = 1 or permanently retain hq[p] = 2. In either case, eventually U5 is executed. Andif ap = 2 then by a similar argument, U6 is eventually enabled, but this contradicts thede�nition of D.That fp is a �lter predicate is shown by the above contradition. It remains to show thatconvergence to (8p :: :fp) occurs in O(d) rounds of any computation. In the case where aprocessor p is the only processor satisfying ap 6= 0 within a connected component, the sameupdate/acknowledge arguments given above show that in a constant number of broadcastsvia the update mechanism, the protocol stabilizes to ap = 0, which implies O(d) convergence.In the case of numerous, competing processors satisfying ap 6= 0, we appeal to argumentsabout maxbp and statements U2 and U4 to conclude that a winner among the competingprocessors is obtained in O(d) rounds.Lemma 10.2 The protocol is self-stabilizing and converges in O(d+K) rounds where theprotocol P self-stabilizes in O(K) rounds.Proof: Lemma 10.1 shows that after O(d) rounds, all freeze bits are permanently false.Thus after O(d) rounds the superstabilizer does not interfere with protocol P , which thenself-stabilizes in O(K) additional rounds.Lemma 10.3 The protocol of Figures 7 and 8 is continuously superstabilizing with su-perstabilization time O(d). 35

www.manaraa.com

Proof: To prove the lemma, the proof of Lemma 9.3 need only be modi�ed so that safetyconditions (\until" properties) account for larger incarnation numbers encountered duringphase processing. The invariant is to show: for any set D of processors such that Drepresents a connected subgraph and fp is false for all p 2 D: all processors have equalincarnation numbers (bp �elds) and that �[D] is locally legitimate. This invariant musthold over a trajectory with any number of topology changes. The de�nition of H [r] is thatgiven in the proof of Lemma 9.3. With respect to state � and processor r, let leader :H [r]be the processor v with maximum identity such that v 2 H [r], v is incident on a topologychange E prior to state �, and bv has the maximum incarnation number of any processor inH [r]. De�nitions of Ph1 and Ph2 are modi�ed to include incarnation numbers:Ph1 � av = 1 ^ (8q : q 6= v : aq = 0) ^ (8q :: hq[v] = 1 ^ gq[v] = bv)Ph2 � av = 2 ^ (8q : q 6= v : aq = 0) ^ (8q :: hq[v] = 2 ^ gq[v] = bv)Claims roughly equivalent to those given in the proof of Lemma 9.3 are:1. For any processor p, ap = 1 holds until either p observes Ph1 or p observes (aq =1 ^ (8r :: hr[q] = 1)) for some processor q > p and bq = bp, or p observes bq > bp forsome q satisfying aq 6= 0.2. For any processor p, fp holds until v observes Ph1.3. For a constant K, following a topology change, there are no additional topologychanges for Kd rounds, a state satisfying Ph1 occurs; and if topology changes occurwithin Kd rounds, the leader v either changes identity or increases its incarnationnumber.4. If there are no topology changes for Kd rounds following v observing Ph1, then v ob-serves Ph2; and if there is a topology change within Kd rounds, then either leadershipchanges or incarnation number increases.5. If v observes Ph2, then either ap = 0 for all p within Kd rounds, or the leadershipchanges due to a topology change.The claims are seen to allow for leadership change during a trajectory due to topologychange. We do not prove the claims in detail, since the arguments are the same as thosemade in the proof of Lemma 9.3 provided no leadership change occurs. The primary concernfor showing correctness is that leadership changes are properly managed.Suppose v is leader :H [r] and a topology change occurs. At the instant of the change, vcan be coordinating any one of the phases.Phase one: If the topology change occurs at any state up to when v observes Ph1, we canassert that av = 1 is acknowledged by any q only if bq = bv and a snapshot is recorded;at such a state, there are two possibilities for incidence on the topology change: (1) the36

www.manaraa.com

S1 write0BBBBBB@ ap; bp := 1; bp + 1freezep := truetp := snappep := (; if E = recovprefresh(ep) if E 6= recovp 1CCCCCCAFigure 7: Continuous Superstabilizer: Interrupt Section for p.processor incident on the change has not acknowledged av = 1 and can have bq 6= bv. If bq >bv then a new leader is de�ned and we appeal to structural induction for safety propertiesof the new leader; if bq < bv then the leadership does not change and the update algorithminsures that phase processing (made monotonic by incarnation numbers) continues for v;and if bq = bv processors identities are used to decide leadership. A second possibility (2)is that the processor q incident on the change has acknowledged av = 1, but this impliesbq > bv as a result, and leadership changes properly.Phase two: If the topology change occurs at any state following v's observance of Ph1(without leadership change) up to when v observes Ph2, then all q 2 H [r] satisfy bq = bv.Any topology change incident on some processor in H [r] results in a larger incarnationnumber and a new leader.To show local legitimacy for any connected set D of unfrozen processors, consider thelast snapshot distributed to processors in D in a trajectory. This snapshot is generated bya leader v that observes Ph2, which implies stability of incarnation numbers between �rstand second phases; this stability guarantees that snapshot assembly is accurate and F(sv)generates a new legitimate global state. This state is set at the instant av := 2 and fpholds for all processors until v observes Ph2; we conclude that the subset D of processorsfor which :fp holds is locally legitimate.11 ConclusionsThere is increasing recognition that dynamic protocols are necessary for many networks.Studying di�erent approaches to programming for dynamic environments is therefore a mo-tivated research topic. Although self-stabilizing techniques for dynamic systems have beenpreviously suggested, explicit research to show how and where these techniques are usefulhas be lacking. This paper shows how assumptions about interrupts and dynamic changecan be exploited with qualitative and quantitative advantages while retaining the fault-tolerant properties of self-stabilization. Impetus for the research described in this paper37

www.manaraa.com

U1 if (ap = 0 ^ maxbp > bp) then bp := maxbpU2 if (ap 6= 0 ^ (9q :: bq > bp ^ aq 6= 0))then ap; bp := 0; maxbpU3 if (ap 6= 0 ^ (9q :: bq > bp) ^ (8q : bq > bp : aq = 0))then ap; bp := 1; maxbp + 1U4 if (ap 6= 0 ^ (9q :: bq = bp ^ q > p ^ aq 6= 0))then ap; bp := 0; maxbpU5 if (ap = 1 ^ (8q :: hq[p] 6= 0 ^ gq[p] = bp))then ap; up := 2; F(sp)U6 if (ap = 2 ^ (8q :: hq[p] 6= 1 ^ gq[p] = bp))then ap; bp := 0; bp + 1U7 forall q 2 processors(A) [fpgdoU8 if bq > gp[q] then gp[q] := bqU9 if aq = 0 ^ gp[q] � bq then hp[q] := 0U10 if aq = 1 ^ hp[q] = 0 then hp[q] := 1U11 if aq = 2 ^ hp[q] = 1 then hp[q]; snapp := 2; uq[p]odU12 if (9q 2 processors(A) [fpg :: aq 6= 0)then freezep ; tp := true ; snapp else freezep := falseFigure 8: Continuous Superstabilizer: Update Extension for p.38

www.manaraa.com

is partly inspired by the thesis that the notion of self-stabilization has wider applicabilitythan just fault-tolerance.The general methods presented in Sections 9 and 10 demonstrate that superstabilizationis, in principle, applicable to any self-stabilizing protocol. These methods, coupled withprevious research devising general methods for making self-stabilizing protocols, are thus ofpotential use for a wide variety of network protocols. The general methods do not deliveroptimum performance in all cases; the hand-crafted protocols of Sections 6 and 7 suggestthat further research would be useful for speci�c problem domains. Our intention is thatthe general methods be regarded as existence proofs of superstabilizing protocols.The examples of superstabilization in this paper happen to be protocols with O(1) andO(d) superstabilization time. However there can be problems, not examined in this paper,with superstabilization times between these extremes. Protocols with superstabilizationtime less than d also have qualitative advantages. For instance, our general methods canbe improved not only by reducing superstabilization time for speci�c problems, but alsoby limiting the impact of change: instead of freezing the entire network following a change(which is the most conservative approach), it may be possible to freeze and reset only aportion of the network.References[AAG87] Y. Afek, B. Awerbuch and E. Gafni, \Applying Static Networks Protocols toDynamic Networks," Proc. of the 28th IEEE Symp. on Foundation of ComputerScience pp. 358-370, 1987.[AB93] Y. Afek and G. M. Brown, \Self-Stabilization over Unreliable CommunicationMedia," Distributed Computing, 7 pp. 27{34, 1993.[ACK90] B. Awerbuch, I. Cidon and S. Kutten, \Communication-Optimal Maintenanceof Replicated Information," Proc. of the 31th IEEE Symp. on Foundation ofComputer Science, pp. 492-502, 1990.[AEH92] E. Anagnostou, R. El-Yaniv, and V. Hadzilacos, \Memory Adaptive Self-Stabilizing Protocols," Proc. of the 6th International Workshop on DistributedAlgorithms, pp. 203{220, 1992.[AH93] E. Anagnostou and V. Hadzilacos, Proc. of the 7th International Workshop onDistributed Algorithms, 1993.[AG90] A. Arora and M. G. Gouda, \Distributed Reset," Proc. FST 10, Springer LNCS,472 pp. 316{331, 1990.[AG92] A. Arora and M. G. Gouda, \Closure and convergence: A formulation offault-tolerant computing," Twenty-second Fault Tolerant Computing Sympo-sium, 1992. 39

www.manaraa.com

[AGH90] B. Awerbuch, O. Goldreich and A. Herzberg, \A Quantitative Approach toDynamic Networks," Proc. of the 9th ACM Symp. on Principles of DistributedComputing, pp. 189-203, 1990.[AGR92] Y. Afek, E. Gafni and A. Rosen, \The Slide Mechanism with Applications inDynamic Networks," Proc. of the 11th ACM Symp. on Principles of DistributedComputing, pp. 35{46, 1992.[AK93] S. Aggarwal and S. Kutten, \Time Optimal Self-Stabilizing Spanning Tree Al-gorithm," Proceedings of the 13th Conference on Foundations of Software Tech-nology and Theoretical Computer Science, 1993.[AM92] B. Awerbuch and Y. Mansour, \An E�cient Topology Update Protocol forDynamic Networks," Proc. of the 6th International Workshop on DistributedAlgorithms, pp. 185-201, 1992.[APV91] B. Awerbuch, B. Patt-Shamir and G. Varghese: \Self-Stabilization by LocalChecking and Correction," Proc. of the 32nd IEEE Symp. on Foundation ofComputer Science pp. 268{277, 1991.[BGM93] J. E. Burns, M. G. Gouda, and R. E. Miller, \Stabilization and pseudo-stabilization", Distributed Computing 7, 1, pp. 35{42, 1993.[BSW69] K. Barlett, R. Scantlebury, and P. Wilkinson. \A Note on Reliable Full-DuplexTransmission over Half-Duplex Links," CACM, 12(5):260-261, May 1969.[CL85] K. M. Chandy and L. Lamport, \Distributed snapshots: determining globalstates of distributed systems," ACM Transactions on Computer Systems, 3(1)pp. 63{75, 1985.[CM88] K. M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison{Wesley, 1988.[Dij74] E. W. Dijkstra, \Self-Stabilizing Systems in Spite of Distributed Control,"CACM 17 pp. 643{644, 1974.[Do92] S. Dolev, \Self-Stabilization of Dynamic Distributed Systems," D.Sc. disserta-tion, Technion{Israel Institute of Technology, June 1992.[Do93] S. Dolev, \Optimal Time Self Stabilization in Dynamic Systems," Proc. of the7th International Workshop on Distributed Algorithms (Springer-Verlag LNCS725), pp. 160{173, September 1993.[DIM93] S. Dolev, A. Israeli and S. Moran, \Self-Stabilization of Dynamic Systems As-suming Only Read/Write Atomicity," Distributed Computing, 7 pp. 3{16, 1993.40

www.manaraa.com

[DIM91] S. Dolev, A. Israeli and S. Moran, \Resource Bounds for Self Stabilizing Mes-sage Driven Protocols," Proc. of the 10th Annual ACM Symp. on Principles ofDistributed Computing, pp. 281-293, 1991.[DW93] S. Dolev and J. L. Welch, \Crash Resilient Communication in Dynamic Net-works," Proc. of the 7th International Workshop on Distributed Algorithms, pp.129-144, 1993.[GH91] M. G. Gouda and T. Herman, \Adaptive Programming," IEEE Trans. Soft.Eng. 17 pp. 911{921, 1991.[GM91] M. G. Gouda and N.J. Multari, \Stabilizing Communication Protocols," IEEETrans. Comp. 40 pp. 448-458, 1991.[GP93] A. S. Gopal and K. J. Perry, \Unifying Self-Stabilization And Fault-Tolerance,"Proc. of the 12nd Annual ACM Symp. on Principles of Distributed Computing,pp. 195-206, 1993.[KP93] S. Katz and K. J. Perry, \Self-Stabilizing Extensions for Message-Passing Sys-tems", Distributed Computing, 7 pp. 17{26, 1993.[La78] L. Lamport, \Time, Clocks, and the Ordering of Events in a Distributed Sys-tem," Comm. of the ACM 21,7, pp. 558-565, 1978.[LL90] L. Lamport and N. Lynch, \Distributed Computing: Models and Methods,"in Handbook of Theoretical Computer Science, Volume B: Formal Models andSemantics, J. van Leeuwen, Managing Editor, Elsevier, Amsterdam, 1990.[SG89] J. Spinelli and R.G. Gallager, \Event Driven Topology Broadcast Without Se-quence Numbers", IEEE Transactions on Communication, Vol. 37, No. 5, (1989)pp. 468-474.12 Appendix: Update Protocol ProofsTheorem 5 The update protocol of Figure 4 self-stabilizes in O(d) rounds.Proof: The the proof is organized as three claims.Claim 1: Following round i, i � 1, the ep �eld of every processor satis�es(8p; q; j : j < i : dist(p; q) � j , (9hq; xq; dist(p; q)i 2 ep))The claim follows by induction on i. The basis of the induction is the �rst round,which trivially establishes hp; xp; 0i 2 ep for every processor. The induction stepfollows because �eld ep is assigned anew in each round and based on tuples that,by the induction hypothesis, have the required property.41

www.manaraa.com

Claim 2: Following round i, i � 1, the ep �eld of every processor satis�es(8p; q; j : j < i : (9hq; y; ki 2 ep :: k � j) (dist(p; q) = k ^ y = xq)))This claim follows by same inductive argument presented for Claim 1.Claim 3: Following round d+ 1, (8p :: (8h; ; ki 2 ep :: k � d))The claim is shown by contradiction. Suppose ep contains a tuple h; ; ji wherej > d. Observe that if j > d + 1 then, by the construction of the initseqfunction, at the end of round d+ 1 the �eld ep also contains some tuple hq; ; kiwhere k = d+ 1. Thus to show the claim, it su�ces to show a contradiction fork = d+1. Since p assigned the tuple hq; ; d+1i to ep during round d+1, it mustbe that p found at some neighbour s the tuple hq; ; di and found no tuple with qas �rst component at a smaller distance. However, the tuple located at s havingdistance d represents the shortest distance to q by Claim 2. And since d boundsthe maximum possible shortest path, by Claim 1 all shortest paths between pand q are visible to p at the end of round d. We conclude that dist(p; q) = d+1,which contradicts the de�nition of diameter d.Claims 1{3 together imply that, following d+1 rounds, each processor correctly has a tuplefor every other processor at distance d and that every tuple in an e-�eld correctly refers toa processorTheorem 6 The protocol of Figure 4 is impulse monotonic:� Let � be a legitimate state for topology T .� The following atomically occurs at state �: a single topology change E occurs to obtaina new topology change U and for each processor r incident on E , the value of xr ischanged to �xr.� Let � be a topology-constant computation of the protocol following the change E .Then the following two claims hold:� For any two processors p and q that are connected in both T and U , there is a tuplehp; ; i 2 eq at each state in �; if p and q are not connected in T but are connected inU , then for any state � 2 � satisfying hp; ; i 2 eq: at every subsequent state � there isa tuple hp; ; i 2 eq.� For any processors p and q, where p is incident on E , if there is a tuple hp; �xp; i 2 eqat some state �, then at every state � following � in � there is a tuple hp; �xp; i 2 eq .42

www.manaraa.com

Proof: The proof is based on considering an arbitrary legitimate state � in topology T ,an arbitrary single topology change E in state � resulting in topology U , followed by atopology-constant computation �. We consider two cases based on the type of change E :either E increases or decreases connectivity in the network. We label a topology changethat increases connectivity as +E , since either a link or processor is added to the network;a topology change that decreases connectivity is labelled �E .For the case +E a technical lemma is needed: Lemma 12.2 shows for � that distances trackedin tuples do not increase during the computation, and that function initseq does not removetuples during the course of the protocol's computation. To show impulse monotonicity, weassign one of two colours to each tuple in an e-register. Atomically with +E we colour alltuples white with the exception of h; ; 0i tuples incident on +E , which are coloured black.Then at each cycle of a processor in �, the colour of a h; ; 0i-tuple is black for processorsincident on +E and white for other processors; the colour of a h; ; ki-tuple, k 6= 0, is inheritedfrom the colour of the h; ; (k� 1)i-tuple upon which it is based. It follows that any tuplethat decreases distance during the course of � is black; because distances do not increasein � and the ordering of neighbours is deterministic in the protocol, once a tuple is blackit remains black. Thus for an arbitrary processor q and some p incident on +E , the tuplehp; ; i 2 q changes colour exactly once in computation �.For the case �E , the same colouring technique is used, with a di�erent lemma: Lemma 12.1shows for � that distances tracked in tuples to not decrease during the computation andthat initseq does not remove tuples that refer to reachable processors. To show impulsemonotonicity, we assign one of two colours to each tuple in an e-register. Atomically with�E we colour all tuples white with the exception of h; ; 0i tuples incident on �E , which arecoloured black. Then at each cycle of a processor in �, the colour of a h; ; 0i-tuple is blackfor processors incident on �E and white for other processors; the colour of a h; ; ki-tuple,k 6= 0, is inherited from the colour of the h; ; (k�1)i-tuple upon which it is based. It followsthat any tuple that increases distance during the course of � is white unless it represents a�nal increase basing the tuple on a shortest path for U ; because distances do not decreasein � and the ordering of neighbours is deterministic in the protocol, once a tuple is blackit remains black. Thus for an arbitrary processor q and some p incident on �E , the tuplehp; ; i 2 q changes colour exactly once in computation �.For the remaining lemmas of this subsection, �, E , T , U , and � are �xed as speci�ed inTheorem 6. We label a topology change that increases connectivity as +E , since either alink or processor is added to the network; a topology change that decreases connectivity islabelled �E . Let dist(x; y) =1 denote that no path connects x and y. To simplify analysiswe call a tuple hp; ; i 2 eq a reachable tuple if distU (p; q) 6=1.Let � and � be states of �. The notation � � � denotes that � occurs before � in thesequence �. The notation successor(�) = � means that state � immediately follows � in�. The notation hp; ; ki 2 eq � � means that tuple hp; ; ki is contained in �eld eq at state�. The predicate adjust(q; �; �) is de�ned to hold if a distance change in a reachable tuple43

www.manaraa.com

occurs:adjust(q; �; �) � � = successor(�) ^ (9hp; ; ki 2 eq � � :: (9hp; ;mi 2 eq � � :: m 6= k))We de�ne a based tuple recursively as follows: tuple hp; ; ki 2 eq�� is based if k = 0 or thereis some based tuple hp; ; (k � 1)i 2 er � � for r 2 Nq. Observe that in a legitimate statefor the update protocol, all tuples are based; following event �E some tuple(s) may not bebased.A tuple hp; ; ki 2 eq is low if it is reachable and k < distU(p; q). A tuple hp; ; ki 2 eq is saidto be maxlow if it is low and satis�es:(8hs; ;mi 2 eq :: hs; ;mi is low) distU(s; q) � distU(p; q))Lemma 12.1 For event �E , for all processors p and q satisfying distU(p; q) 6= 1, thefollowing claims hold:(1) (8� : � 2 � : hp; ; i 2 eq � �)(2) hp; ; `i 2 eq) ` � distU(p; q)(3) (� � � ^ hp; ; `i 2 eq � � ^ hp; ;mi 2 eq � �)) ` � m(4) hp; ; ki 2 eq � � is based) distU(q; p) = k(5) hp; ; ki 2 eq is based) (8j : 0 � j � k : (9hr; ; ji 2 eq :: hr; ; ji is based))(6) adjust(q; �; �)) (8hs; ; i 2 eq :: hs; ; i 2 eq � � is maxlow) hs; ; i 2 eq �� is based)Proof: Proof by induction on �.Basis Let � be the state obtained from � as modi�ed by �E ; � is the initial state of � andforms the induction's basis. Claim (1) holds for � by the assumption that � satis�es LT .Claims (2) and (4) hold by the assumption of � satisfying LT and the fact that �E can onlyincrease minimum distances between processors. Claims (3) and (6) are claims over pairs ofdistinct states and thus hold trivially in the initial state of �. Claim (5) follows from Claim(4), which establishes that a based tuple represents a minimum distance, and because �satis�es LT : each based tuple also corresponds to a minimum distance in T ; therefore allnodes that lie on a shortest path una�ected by �E between q and p have based tuples.Induction Let � = successor(�) and suppose that (1){(6) hold for all states
,
 � �.Consider two cases for adjust : if adjust(q; �; �) does not hold for any processor q, thatis, either eq is unchanged by the transition from � to � or only changes to unreachabletuples occur, then (1){(6) hold for � by inheritance from �. The other possibility is thatadjust(q; �; �) holds for some processor q. In this case, the transition from � to � writes44

www.manaraa.com

initseq(B) into eq, where B contains tuples computed by steps in � or that are presentin state �. Tuples placed in B by steps of � are calculated from tuples of q's neighbours,which satisfy (1){(6) by the induction hypothesis. To show that (1){(6) hold for state �, weconsider the claims with respect to B, and then reason about initseq(B). The remainder ofthe induction considers tuples placed in B by steps of � preceding state �.Claim (1) holds for B because hq; ; 0i 2 eq holds for any iteration of the loop in Figure 4 andby the induction hypothesis for (1), each r 2 Nq has a tuple hp; ; i 2 er for any p satisfyingdistU (r; p) 6=1: Claim (2) holds for B since hp; ; `i 2 B for ` 6= 0 implies hp; ; `� 1i 2 er forsome r 2 Nq and the induction hypothesis (2) is assumed for r: Claim (2), the inductionhypothesis (4), and the de�nition of a based tuple show that (4) holds for based tuplesin B. Claim (5) holds by the induction hypothesis (5): based tuples in B are calculatedupon neighbouring processor based tuples, which satisfy (5) by assumption; hence all ofthe neighbour's supporting based tuples (at smaller distances) are also input to formingtuples in B. Claims (3) and (6) are only concerned with tuples that change distance withrespect to current distances in the eq �eld. Claim (3) holds for tuples in B by the inductionhypothesis for (1) and (3); tuples in B are calculated from neighbouring e-�elds and tuplesin these �elds do not increase distance by any transition prior to state �. Similarly, Claim(6) holds for B because any adjustment to a tuple follows from (possibly multiple) changesin neighbouring e-�elds; by hypothesis (6), each such change to an e-�eld adjusts all maxlowtuples, which then by (1){(2) and (4) remain constant thereafter.Thus (1){(6) have been established for B prior to the writing of initseq(B) at state �.It only remains to show that no reachable tuple is removed from B by the applicationof initseq. This is argued by contradiction. Suppose a reachable tuple hp; ;mi 2 B isdiscarded by initseq; this implies the existence of a \gap", i.e. for some distance `, ` < m,no tuple h; ; `i 2 B exists. All tuples contained in B have distances equal to or larger thantuples contained in eq , by Claim (3). It follows that such a gap is the result of increasingthe distance of some tuple(s). Yet (6) implies that the maximum-distance reachable tupleresulting from an increase yields a based tuple; (5) then implies the existance of tuples atall lesser distances in B, which contradicts the assumption of a gap.Lemma 12.2 For event +E , for all processors p and q satisfying distU(p; q) 6= 1, thefollowing claims hold:(1) hp; ; ki 2 eq) distU (p; q) � k(2) (� � � ^ hp; ; `i 2 eq � � ^ hp; ;mi 2 eq � �)) ` � m(3) (� � � ^ hp; ; i 2 eq � �)) hp; ; i 2 eq � �(4) hp; ; ki 2 eq) (8r; ` :: distT (p; r) = ` 6=1) (9hr; ;mi 2 eq :: m � k + `))Proof: Proof by induction on �. To simplify cases within the proof, we distinguish twopossibilities for event +E ; either a link is added to the network or a node is added with45

www.manaraa.com

its accompanying links. In case +E adds a node to the network, let z denote the nodeadded. The assumption for dynamic and impulse monotonicity with respect to nodes isthat they initially have empty e-�elds when added to the network. Observe from the codeof the update protocol and the assumption of a legitimate state prior to +E that no processorchanges its e-�eld so long as ez contains no tuples. Furthermore, after one cycle by processorz, the ez �eld is assigned to satisfy:(y) (8p; k :: distU(p; z) = k 6=1) hp; ; ki 2 ez)In addition to (1)-(4), we add (5) to the list of claims to prove invariant in the computation�:(5) hz; ; ki 2 eq) (8r; ` :: distU (z; r) = ` 6=1) (9hr; ;mi 2 eq :: m � k + `))Basis If +E adds no processor to the network, then let � be the state obtained from � asmodi�ed by +E ; if a processor z is added to the network, then let � be the �rst state in �that satis�es (y). State � forms the induction's basis. Claim (1) holds for � because event+E can only decrease distances between existing nodes and all tuples present in e-�elds atstate � represent distances in T by the assumption of a legitimate state, hence also for state�; and (y) directly implies (1) for processor z. Claims (2) and (3) hold for � either becausethere are no previous states in � or because no e-�elds are modi�ed except for ez , whichobtains its initial value at �. Claim (4) holds trivially for � since � satis�es LT , and (5)holds because no processor reads any tuple from ez prior to state �.Induction Let � = successor(�) and suppose that (1){(5) hold for all states
,
 � �.Consider two cases for adjust : if adjust(q; �; �) does not hold for any processor q, thatis, either eq is unchanged by the transition from � to � or only changes to unreachabletuples occur, then (1){(5) hold for � by inheritance from �. The other possibility is thatadjust(q; �; �) holds for some processor q. In this case, the transition from � to � writesinitseq(B) into eq, where B contains tuples computed by steps in � or that are presentin state �. Tuples placed in B by steps of � are calculated from tuples of q's neighbours,which satisfy (1){(5) by the induction hypothesis. To show that (1){(5) hold for state �, weconsider the claims with respect to B, and then reason about initseq(B). The remainder ofthe induction considers tuples placed in B by steps of � preceding state �.Claim (1) holds for B because any step of � that places a tuple in B either places hq; ; 0i inB or calculates some hp; ; (k+ 1)i based on a tuple hp; ; ki 2 er for some r 2 Nq; and tuplesin er satisfy (1) by the induction hypothesis. Similarly, (4) and (5) follow by appealing tothe induction hypothesis for the contents of some neighbouring processor's e-�eld. To show(3), consider any tuple hp; ; i 2 eq��. This tuple's presence is either inherited from � or wascalculated by some step of � preceding �; in either case, we infer the existence of a tuplehp; ; i 2 er for r 2 Nq. By the induction hypothesis (3), some tuple hp; ; i 2 er is present ateach state up to �, which implies the computation of B results in hp; ; i 2 B � �. For (2) itsu�ces to show, for any tuple hp; ; `i 2 eq � �, that hp; ;mi 2 B � � satis�es m � `. Since46

www.manaraa.com

ic +E ip iqiris itiu iviw ixiy iz����HHHH HHHH HHHH����Figure 9: Network for Counterexample.calculation of hp; ;mi is based on neighbouring e-�elds, all of whose tuples satisfy (2) byhypothesis, we conclude that (2) holds for B.Thus (1){(5) have been established for B prior to the writing of initseq(B) at state �.It only remains to show that no reachable tuple is removed from B by the applicationof initseq. This is argued by contradiction. Suppose a reachable tuple hp; ;mi 2 B isdiscarded by initseq; this implies the existence of a \gap", i.e. for some distance `, ` < m,no tuple h; ; `i 2 B exists. All tuples contained in B have distances smaller or equal totuples contained in eq, by Claim (2). It follows that such a gap is the result of decreasingthe distance of some tuple(s). This situation leads to the claim:(6) (8hr; ; ji 2 B : j < ` ^ r 6= z : distT (r; p) =1)Claim (6) follows from (4): on one hand, if distT (r; p) < (m � j) holds for any tuplehr; ; ji 2 B, j < `, then the tuple hp; ;mi 62 B; on the other hand, if distT (r; p) � (m � j)holds for every tuple hr; ; ji 2 B, j < `, then tuples at distances m; (m� 1); . . . are by (4)present in B and there is no gap at distance `. As a consequence of (6), there is sometuple hp; ;mi 2 B for which distT (q; p) = 1. Therefore hp; ;mi 2 B holds because someneighbouring processor's e-register contained tuple hp; ; (m� 1)i, which implies hz; ; i 2 B.If p = z then there exists some neighbour of z, call it s, so that distT = (q; s) = distU (q; s),which by (1), (3) and the assumption that � is legitimate for T contradicts the assumptionof a gap. If p 6= z then the tuple hz; ; i has smaller distance than m and by (5) the existanceof a gap is contradicted.Theorem 7 The update protocol of Figure 4 does not satisfy dynamic monotonicity.Proof: The proof is by counter-example. Our counter-example is stronger than neededto disprove dynamic montonicity | the counter-example shows that even using the ac-knowledgement mechanism given in Section 9, dynamic monotonicity is not be acheived.Moreover, the counter-example uses only a single topology change at a legitimate statefor the update protocol followed by only one additional change to a register �eld. Thuseven a slight weakening of the impulse monotonicity property does not hold for the update47

www.manaraa.com

protocol. Instead of explaining the counter-example in terms of an xp �eld, we use theterminology of Section 9 and use ap and bp sub�elds.The counter-example consists of the following scenario. Topology T is given, aspartly shown in Figure 9; the link c{p is not present in T and each node i 2fp; q; r; s; t; u; v; w; x; y; zg satis�es mdistT (i; c)> 50 (this larger distance is realized throughadditional links and processors not shown in the �gure). Processor c has boolean variablesac and bc which are broadcast via the update protocol to all other processors. The scenariobegins in a legitimate state � for the update protocol, in which all processors have theknowledge that (ac ^ bc) holds. We now consider a topology change +E that adds the linkc{p, accompanied atomically by the change ac := false. The subsequent computation forthe counterexample is:1. Processors p, s, u, v, x, and z execute in sequence one cycle each. As a result,processors have tuples for c as follows:processor p q r s t u v w x y zdist(c) 1 2 3 4 5 6ac : : : : : :bc(blank table entries indicate that the processors has values from state �.)2. Processors x, v, u, s, p, and c execute in sequence one cycle each. As a result, processorc has updated distances to these nodes and also receives acknowledgement that theseprocessors have \seen" that :ac holds.3. Processors r, t, w, and y execute in sequence one cycle each. As a result, processorshave tuples for c as follows:processor p q r s t u v w x y zdist(c) 1 2 2 3 3 4 4 5 5 6ac : : : : : : : : : :bc4. Processors w, t, r, p, and c execute in sequence one cycle each. As a result, processorc has updated distances to these nodes and also receives acknowledgement that theseprocessors have seen that :ac holds.5. Processors q executes a cycle, with the result:processor p q r s t u v w x y zdist(c) 1 2 2 2 3 3 4 4 5 5 6ac : : : : : : : : : : :bc6. Processors p and c execute in sequence one cycle each. As a result, processor c has anupdated distance to q and now has collected acknowlegements from every processorthat :ac holds. 48

www.manaraa.com

7. Processor c writes bc := false into its register.8. Processors p, s, u, v, x, r, t, and w execute in sequence one cycle each. Distances donot change, but the updated value of bc is propagated:processor p q r s t u v w x y zdist(c) 1 2 2 2 3 3 4 4 5 5 6ac : : : : : : : : : : :bc : : : : : : : :9. Processor z executes a cycle, obtaining a smaller distance to c and thereby also up-dating its images of ac and bc, with the result:processor p q r s t u v w x y zdist(c) 1 2 2 2 3 3 4 4 5 5 5ac : : : : : : : : : : :bc : : : : : : : : :10. Processor y executes a cycle, obtaining an updated distance from q and also copiesthe bc value from q:processor p q r s t u v w x y zdist(c) 1 2 2 2 3 3 4 4 5 3 5ac : : : : : : : : : : :bc : : : : : : : : :11. Processor z executes a cycle, obtaining a smaller distance to c from y, copying itsimages of ac and bc from y, with the result:processor p q r s t u v w x y zdist(c) 1 2 2 2 3 3 4 4 5 3 4ac : : : : : : : : : : :bc : : : : : : : :Thus a computation exists in which processor z obtains the sequence of bc values [true,false, true] whereas the sequence of values at processor c is [true, false] for bc. Dynamicmonotonicity is therefore violated.13 Appendix: Message-based ImplementationSections 2{5 propose a shared-register model with atomic execution of interrupt statements.The results are, however, intended for an asynchronous message-passing model. This sec-tion sketches the constructions needed to implement the shared-registermodel in terms of areasonable message-passing system. Figure 10 presents a schematic view of a layered con-struction for the shared-register model. Each layer is a self-stabilizing protocol to deliverservices to the next higher layer. The overall construction is a fair composition of the layers.49

www.manaraa.com

At the lowest layer we have a system of asynchronously executing, uniquely namedprocessors that communicate by sending and receiving messages via local, numbered ports.At the second layer, a processor knows which of the ports are active and the namesof processors at the opposite ends of channels attached to the active ports. Since thestatus of ports and channels are dynamic, time-outs and probabilistic methods are usedto implement a protocol that simulates the second layer. Also at this layer, a processor isable to distinguish between a link recovery and a processor recovery associated with a portbecoming active.The third layer is a modi�cation of the alternating bit protocol for bounded channelsuggested by [GM91, AB93, DIM91]. These self-stabilizing protocols also use time-out. Weomit the requirement for the master-slave setup for the two ends of a link by the followingtechnique: A message m received by a processor p from a processor q has two �elds m1and m2. p process both �elds and sends a message m0 with two �elds m01 and m02 to q.Processor p processes m1 as the receiver in the bounded protocol of [AB93] to produce m02.p process m2 as the sender of the bounded protocol of [AB93] to produce m01. Similarly, qact as the receiver for m01 and as the sender for m02 and alternate the order of its responds.Thus, we view the link as two undirected links in one p is the sender and q is the receiverand in the other q is the sender and p is the receiver. Eventually, in each virtual link thereexist exactly one token that circulates from p to q and backwards.The fourth layer implements link registers using the alternating bit protocol providedby the third layer. The implementation idea was �rst introduced in [DIM91] and [Do92] forthe case of implementing link registers by message passing. Below we sketch how essentiallythe same idea can be used for implementing a shared register as speci�ed in Section 2. The�fth and sixth layers are discussed in earlier sections of this paper.The heart of the implementation of the fourth layer is the simulation of virtual read andvirtual write operations. Every processor has a local variable virtual-register that representsits register. A write operation is implemented by writing to the virtual-register. Every timea processor p receives a token at the virtual link in which p plays the receiver, p augmentsthe token with the current value of its virtual-register. A read operation from a neighbourq is implemented by receiving a token from q in the virtual link in which p is the sender.Then receiving the second token from this virtual link and using the value augmented toit, constitutes the result of the read operation. Note that during the virtual read operationp continues to handle all the tokens arriving through every virtual link by augmenting thetokens with the value of its virtual-register.To show that the implementation is correct one needs to show that the order of op-erations of every processor is preserved and the result of any virtual read from a registeris a value that has been in that register during the virtual read operation. We map eachvirtual operation with real-time. The virtual write operation take place at the time thevirtual-register is updated. The virtual read operation take place at the time the secondtoken is initiated at the neighbour. Obviously, there is an execution in the shared registermodel that would have the write operation at the real-time of the virtual write operations50

www.manaraa.com

(Lowest Layer)FIFO-channels, ports, unique processor identifiers + probability+ time-outsneighbour names, recovery typelink token, ABP protocollink registersshared registersupdate protocolstabilizing protocol(Highest Layer)
Figure 10: Schematic of Layered Register Construction.and read operations at the real-time of the virtual read operations. This shared registerexecution is equivalent to that required by the model.

51

